Mycielski graphs are a family of triangle-free graphs 𝑀_𝑘 with arbitrarily high chromatic number. 𝑀_𝑘 has chromatic number k and there is a short informal proof of this fact, yet finding proofs of it via automated reasoning techniques has proved to be a challenging task. In this paper, we study the complexity of clausal proofs of the uncolorability of 𝑀_𝑘 with 𝑘−1 colors. In particular, we consider variants of the PR (propagation redundancy) proof system that are without new variables, and with or without deletion. These proof systems are of interest due to their potential uses for proof search. As our main result, we present a sublinear-length and constant-width PR proof without new variables or deletion. We also implement a proof generator and verify the correctness of our proof. Furthermore, we consider formulas extended with clauses from the proof until a short resolution proof exists, and investigate the performance of CDCL in finding the short proof. This turns out to be difficult for CDCL with the standard heuristics. Finally, we describe an approach inspired by SAT sweeping to find proofs of these extended formulas.
more »
« less
Preprocessing of Propagation Redundant Clauses
The propagation redundant (PR) proof system generalizes the resolution and resolution asymmetric tautology proof systems used by conflict-driven clause learning (CDCL) solvers. PR allows short proofs of unsatisfiability for some problems that are difficult for CDCL solvers. Previous attempts to automate PR clause learning used hand-crafted heuristics that work well on some highly-structured problems. For example, the solver SaDiCaL incorporates PR clause learning into the CDCL loop, but it cannot compete with modern CDCL solvers due to its fragile heuristics. We present prExtract, a preprocessing technique that learns short PR clauses. Adding these clauses to a formula reduces the search space that the solver must explore. By performing PR clause learning as a preprocessing stage, PR clauses can be found efficiently without sacrificing the robustness of modern CDCL solvers. On a large portion of SAT competition benchmarks we found that preprocessing with prExtract improves solver performance. In addition, there were several satisfiable and unsatisfiable formulas that could only be solved after preprocessing with prExtract. prExtract supports proof logging, giving a high level of confidence in the results.
more »
« less
- Award ID(s):
- 2108521
- PAR ID:
- 10410365
- Editor(s):
- Blanchette, Jasmin; Kovacs, Laura; Pattinson, Dirk
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Lecture notes in computer science
- Edition / Version:
- Lecture Notes in Computer Science
- Volume:
- 12651
- Issue:
- 1
- ISSN:
- 0302-9743
- Page Range / eLocation ID:
- 108-124
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Adding blocked clauses to a CNF formula can substantially speed up SAT-solving, both in theory and practice. In theory, the addition of blocked clauses can exponentially reduce the length of the shortest refutation for a formula [17, 19]. In practice, it has been recently shown that the runtime of CDCL solvers decreases significantly for certain instance families when blocked clauses are added as a preprocessing step [10,22]. This fact is in contrast to, but not in contradiction with, prior results showing that Blocked- Clause Elimination (BCE) is sometimes an effective preprocessing step [14,15]. We suggest that the practical role of blocked clauses in SAT-solving might be richer than expected. Concretely, we propose a theoretical study of the complexity of Blocked-Clause Addition (BCA) as a preprocessing step for SAT-solving, and in particular, consider the problem of adding the maximum number of blocked clauses of a given arity k to an input formula F. While BCE is a confluent process, meaning that the order in which blocked clauses are eliminated is irrelevant, this is not the case for BCA: adding a blocked clause to a formula might unblock a different clause that was previously blocked. This order-sensitivity turns out to be a crucial obstacle for carrying out BCA efficiently as a preprocessing step. Our main result is that computing the maximum number of k-ary blocked clauses that can be added to an input formula F is NP-hard for every k ≥ 2.more » « less
-
Restarts are a widely-used class of techniques integral to the efficiency of Conflict-Driven Clause Learning (CDCL) Boolean SAT solvers. While the utility of such policies has been well-established empirically, a theoretical understanding of whether restarts are indeed crucial to the power of CDCL solvers is missing. In this paper, we prove a series of theoretical results that characterize the power of restarts for various models of SAT solvers. More precisely, we make the following contributions. First, we prove an exponential separation between a drunk randomized CDCL solver model with restarts and the same model without restarts using a family of satisfiable instances. Second, we show that the configuration of CDCL solver with VSIDS branching and restarts (with activities erased after restarts) is exponentially more powerful than the same configuration without restarts for a family of unsatisfiable instances. To the best of our knowledge, these are the first separation results involving restarts in the context of SAT solvers. Third, we show that restarts do not add any proof complexity-theoretic power vis-a-vis a number of models of CDCL and DPLL solvers with non-deterministic static variable and value selection.more » « less
-
Platzer, A.; Sutcliffe, G. (Ed.)Existing proof-generating quantified Boolean formula (QBF) solvers must construct a different type of proof depending on whether the formula is false (refutation) or true (satisfaction). We show that a QBF solver based on ordered binary decision diagrams (BDDs) can emit a single dual proof as it operates, supporting either outcome. This form consists of a sequence of equivalence-preserving clause addition and deletion steps in an extended resolution framework. For a false formula, the proof terminates with the empty clause, indicating conflict. For a true one, it terminates with all clauses deleted, indicating tautology. Both the length of the proof and the time required to check it are proportional to the total number of BDD operations performed. We evaluate our solver using a scalable benchmark based on a two-player tiling game.more » « less
-
We introduce proof systems for propositional logic that admit short proofs of hard formulas as well as the succinct expression of most techniques used by modern SAT solvers. Our proof systems allow the derivation of clauses that are not necessarily implied, but which are redundant in the sense that their addition preserves satisfiability. To guarantee that these added clauses are redundant, we consider various efficiently decidable redundancy criteria which we obtain by first characterizing clause redundancy in terms of a semantic implication relationship and then restricting this relationship so that it becomes decidable in polynomial time. As the restricted implication relation is based on unit propagation---a core technique of SAT solvers---it allows efficient proof checking too. The resulting proof systems are surprisingly strong, even without the introduction of new variables---a key feature of short proofs presented in the proof-complexity literature. We demonstrate the strength of our proof systems on the famous pigeon hole formulas by providing short clausal proofs without new variables.more » « less
An official website of the United States government

