skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 27, 2025

Title: Sometimes Hoarding is Harder than Cleaning: NP-hardness of Maximum Blocked-Clause Addition
Adding blocked clauses to a CNF formula can substantially speed up SAT-solving, both in theory and practice. In theory, the addition of blocked clauses can exponentially reduce the length of the shortest refutation for a formula [17, 19]. In practice, it has been recently shown that the runtime of CDCL solvers decreases significantly for certain instance families when blocked clauses are added as a preprocessing step [10,22]. This fact is in contrast to, but not in contradiction with, prior results showing that Blocked- Clause Elimination (BCE) is sometimes an effective preprocessing step [14,15]. We suggest that the practical role of blocked clauses in SAT-solving might be richer than expected. Concretely, we propose a theoretical study of the complexity of Blocked-Clause Addition (BCA) as a preprocessing step for SAT-solving, and in particular, consider the problem of adding the maximum number of blocked clauses of a given arity k to an input formula F. While BCE is a confluent process, meaning that the order in which blocked clauses are eliminated is irrelevant, this is not the case for BCA: adding a blocked clause to a formula might unblock a different clause that was previously blocked. This order-sensitivity turns out to be a crucial obstacle for carrying out BCA efficiently as a preprocessing step. Our main result is that computing the maximum number of k-ary blocked clauses that can be added to an input formula F is NP-hard for every k ≥ 2.  more » « less
Award ID(s):
2229099
PAR ID:
10538899
Author(s) / Creator(s):
Publisher / Repository:
EasyChair
Date Published:
Volume:
100
ISSN:
2398-7340
Page Range / eLocation ID:
408-425
Format(s):
Medium: X
Location:
Balaclava, Mauritius
Sponsoring Org:
National Science Foundation
More Like this
  1. Blanchette, Jasmin; Kovacs, Laura; Pattinson, Dirk (Ed.)
    The propagation redundant (PR) proof system generalizes the resolution and resolution asymmetric tautology proof systems used by conflict-driven clause learning (CDCL) solvers. PR allows short proofs of unsatisfiability for some problems that are difficult for CDCL solvers. Previous attempts to automate PR clause learning used hand-crafted heuristics that work well on some highly-structured problems. For example, the solver SaDiCaL incorporates PR clause learning into the CDCL loop, but it cannot compete with modern CDCL solvers due to its fragile heuristics. We present prExtract, a preprocessing technique that learns short PR clauses. Adding these clauses to a formula reduces the search space that the solver must explore. By performing PR clause learning as a preprocessing stage, PR clauses can be found efficiently without sacrificing the robustness of modern CDCL solvers. On a large portion of SAT competition benchmarks we found that preprocessing with prExtract improves solver performance. In addition, there were several satisfiable and unsatisfiable formulas that could only be solved after preprocessing with prExtract. prExtract supports proof logging, giving a high level of confidence in the results. 
    more » « less
  2. Optimized SAT solvers not only preprocess the clause set, they also transform it during solving as inprocessing. Some preprocessing techniques have been generalized to first-order logic with equality. In this article, we port inprocessing techniques to work with superposition, a leading first-order proof calculus, and we strengthen known preprocessing techniques. Specifically, we look into elimination of hidden literals, variables (predicates), and blocked clauses. Our evaluation using the Zipperposition prover confirms that the new techniques usefully supplement the existing superposition machinery. 
    more » « less
  3. Optimized SAT solvers not only preprocess the clause set, they also transform it during solving as inprocessing. Some preprocessing techniques have been generalized to first-order logic with equality. In this paper, we port inprocessing techniques to work with superposition, a leading first-order proof calculus, and we strengthen known preprocessing techniques. Specifically, we look into elimination of hidden literals, variables (predicates), and blocked clauses. Our evaluation using the Zipperposition prover confirms that the new techniques usefully supplement the existing superposition machinery. 
    more » « less
  4. Multiple known algorithmic paradigms (backtracking, local search and the polynomial method) only yield a 2n(1-1/O(k)) time algorithm for k-SAT in the worst case. For this reason, it has been hypothesized that the worst-case k-SAT problem cannot be solved in 2n(1-f(k)/k) time for any unbounded function f. This hypothesis has been called the "Super-Strong ETH", modelled after the ETH and the Strong ETH. It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances near the "critical threshold", where the clause-to-variable ratio is such that randomly chosen instances are satisfiable with probability 1/2. We give a randomized algorithm which refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any clause-to-variable ratio. For example, given any random k-SAT instance F with n variables and m clauses, our algorithm decides satisfiability for F in  2n(1-c*log(k)/k) time with high probability (over the choice of the formula and the randomness of the algorithm). It turns out that a well-known algorithm from the literature on SAT algorithms does the job: the PPZ algorithm of Paturi, Pudlak, and Zane (1999).   The Unique k-SAT problem is the special case where there is at most one satisfying assignment. Improving prior reductions, we show that the Super-Strong ETHs for Unique k-SAT and k-SAT are equivalent. More precisely, we show the time complexities of Unique k-SAT and k-SAT are very tightly correlated: if Unique k-SAT is in  2n(1-f(k)/k) time for an unbounded f, then k-SAT is in 2n(1-f(k)/(2k)) time. 
    more » « less
  5. Multiple known algorithmic paradigms (backtracking, local search and the polynomial method) only yield a 2n(1−1/O(k)) time algorithm for k-SAT in the worst case. For this reason, it has been hypothesized that the worst-case k-SAT problem cannot be solved in 2n(1−f(k)/k) time for any unbounded function f. This hypothesis has been called the “Super-Strong ETH”, modeled after the ETH and the Strong ETH. We give two results on the Super-Strong ETH: 1. It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances near the “critical threshold”, where the clause-to-variable ratio is 2^kln2−Θ(1). We give a randomized algorithm which refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any clause-to-variable ratio. For example, given any random k-SAT instance F with n variables and m clauses, our algorithm decides satisfiability for F in 2^n(1−Ω(logk)/k) time, with high probability (over the choice of the formula and the randomness of the algorithm). It turns out that a well-known algorithm from the literature on SAT algorithms does the job: the PPZ algorithm of Paturi, Pudlák and Zane [17]. 2. The Unique k-SAT problem is the special case where there is at most one satisfying assignment. Improving prior reductions, we show that the Super-Strong ETHs for Unique k-SAT and k-SAT are equivalent. More precisely, we show the time complexities of Unique k-SAT and k-SAT are very tightly correlated: if Unique k-SAT is in 2^n(1−f(k)/k) time for an unbounded f, then k-SAT is in 2^n(1−f(k)(1−ε)/k) time for every ε>0. 
    more » « less