Large language models (LLMs) are fast becoming ubiquitous and have shown impressive performance in various natural language processing (NLP) tasks. Annotating data for downstream applications is a resource-intensive task in NLP. Recently, the use of LLMs as a cost-effective data annotator for annotating data used to train other models or as an assistive tool has been explored. Yet, little is known regarding the societal implications of using LLMs for data annotation. In this work, focusing on hate speech detection, we investigate how using LLMs such as GPT-4 and Llama-3 for hate speech detection can lead to different performances for different text dialects and racial bias in online hate detection classifiers. We used LLMs to predict hate speech in seven hate speech datasets and trained classifiers on the LLM annotations of each dataset. Using tweets written in African-American English (AAE) and Standard American English (SAE), we show that classifiers trained on LLM annotations assign tweets written in AAE to negative classes (e.g., hate, offensive, abuse, racism, etc.) at a higher rate than tweets written in SAE and that the classifiers have a higher false positive rate towards AAE tweets. We explore the effect of incorporating dialect priming in the prompting techniques used in prediction, showing that introducing dialect increases the rate at which AAE tweets are assigned to negative classes.
more »
« less
Hate Speech Classifiers Learn Normative Social Stereotypes
Abstract Social stereotypes negatively impact individuals’ judgments about different groups and may have a critical role in understanding language directed toward marginalized groups. Here, we assess the role of social stereotypes in the automated detection of hate speech in the English language by examining the impact of social stereotypes on annotation behaviors, annotated datasets, and hate speech classifiers. Specifically, we first investigate the impact of novice annotators’ stereotypes on their hate-speech-annotation behavior. Then, we examine the effect of normative stereotypes in language on the aggregated annotators’ judgments in a large annotated corpus. Finally, we demonstrate how normative stereotypes embedded in language resources are associated with systematic prediction errors in a hate-speech classifier. The results demonstrate that hate-speech classifiers reflect social stereotypes against marginalized groups, which can perpetuate social inequalities when propagated at scale. This framework, combining social-psychological and computational-linguistic methods, provides insights into sources of bias in hate-speech moderation, informing ongoing debates regarding machine learning fairness.
more »
« less
- Award ID(s):
- 1846531
- PAR ID:
- 10410369
- Date Published:
- Journal Name:
- Transactions of the Association for Computational Linguistics
- Volume:
- 11
- ISSN:
- 2307-387X
- Page Range / eLocation ID:
- 300 to 319
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the spreading of hate speech on social media in recent years, automatic detection of hate speech is becoming a crucial task and has attracted attention from various communities. This task aims to recognize online posts (e.g., tweets) that contain hateful information. The peculiarities of languages in social media, such as short and poorly written content, lead to the difficulty of learning semantics and capturing discriminative features of hate speech. Previous studies have utilized additional useful resources, such as sentiment hashtags, to improve the performance of hate speech detection. Hashtags are added as input features serving either as sentiment-lexicons or extra context information. However, our close investigation shows that directly leveraging these features without considering their context may introduce noise to classifiers. In this paper, we propose a novel approach to leverage sentiment hashtags to enhance hate speech detection in a natural language inference framework. We design a novel framework SRIC that simultaneously performs two tasks: (1) semantic relation inference between online posts and sentiment hashtags, and (2) sentiment classification on these posts. The semantic relation inference aims to encourage the model to encode sentiment-indicative information into representations of online posts. We conduct extensive experiments on two real-world datasets and demonstrate the effectiveness of our proposed framework compared with state-of-the-art representation learning models.more » « less
-
Hate speech and offensive language are rampant on social media. Machine learning has provided a way to moderate foul language at scale. However, much of the current research focuses on overall performance. Models may perform poorly on text written in a minority dialectal language. For instance, a hate speech classifier may produce more false positives on tweets written in African-American Vernacular English (AAVE). To measure these problems, we need text written in both AAVE and Standard American English (SAE). Unfortunately, it is challenging to curate data for all linguistic styles in a timely manner—especially when we are constrained to specific problems, social media platforms, or by limited resources. In this paper, we answer the question, “How can we evaluate the performance of classifiers across minority dialectal languages when they are not present within a particular dataset?” Specifically, we propose an automated fairness fuzzing tool called FuzzE to quantify the fairness of text classifiers applied to AAVE text using a dataset that only contains text written in SAE. Overall, we find that the fairness estimates returned by our technique moderately correlates with the use of real ground-truth AAVE text. Warning: Offensive language is displayed in this manuscript.more » « less
-
We investigate how annotators’ insensitivity to differences in dialect can lead to racial bias in automatic hate speech detection models, potentially amplifying harm against minority populations. We first uncover unexpected correlations between surface markers of African American English (AAE) and ratings of toxicity in several widely used hate speech datasets. Then, we show that models trained on these corpora acquire and propagate these biases, such that AAE tweets and tweets by self-identified African Americans are up to two times more likely to be labelled as offensive compared to others. Finally, we propose dialect and race priming as ways to reduce the racial bias in annotation, showing that when annotators are made explicitly aware of an AAE tweet’s dialect they are significantly less likely to label the tweet as offensive.more » « less
-
Detecting harmful content on social media, such as Twitter, is made difficult by the fact that the seemingly simple yes/no classification conceals a significant amount of complexity. Unfortunately, while several datasets have been collected for training classifiers in hate and offensive speech, there is a scarcity of datasets labeled with a finer granularity of target classes and specific targets. In this paper, we introduce THOS, a dataset of 8.3k tweets manually labeled with fine-grained annotations about the target of the message. We demonstrate that this dataset makes it feasible to train classifiers, based on Large Language Models, to perform classification at this level of granularity.more » « less
An official website of the United States government

