skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pulse sequences for manipulating spin states of molecular radical-pair-based electron spin qubit systems for quantum information applications.
Molecular qubits are an emerging platform in quantum information science (QIS) due to the unmatched structural control that chemical design and synthesis provide compared to other leading qubit technologies. This theoretical study investigates pulse sequence protocols for spin-correlated radical pairs (SCRPs), which are important molecular spin qubit pair (SQP) candidates. Here, we introduce improved microwave pulse protocols for enhancing the execution times of quantum logic gates based on SQPs. Signi ficantly, this study demonstrates that the proposed pulse sequences selectively remove certain contributions from nuclear spin effects on spin dynamics, which are a common source of decoherence. Additionally, we have analyzed the factors that control the fidelity of the SQP spin state following application of the CNOT gate. It was found that higher magnetic fi elds introduce a high frequency oscillation in the fidelity. Thereupon, it is suggested that further research should be geared towards executing quantum gates at lower magnetic field values. In addition, an absolute bound of the fidelity outcome due to decoherence is determined, which clearly identifies the important factors that control gate execution. Finally, examples of the application of these pulse sequences to SQPs are described.  more » « less
Award ID(s):
2154627
PAR ID:
10410410
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of chemical physics
ISSN:
1520-9032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Single-qubit gates are essential components of a universal quantum computer. Without selective addressing of individual qubits, scalable implementation of quantum algorithms is extremely challenging. When the qubits are discrete points or regions on a lattice, selectively addressing magnetic spin qubits at the nanoscale remains a challenge due to the difficulty of localizing and confining a classical divergence-free field to a small volume of space. Herein we propose a technique for addressing spin qubits using voltage-control of nanoscale magnetism, exemplified by the use of voltage control of magnetic anisotropy. We show that by tuning the frequency of the nanomagnet’s electric field drive to the Larmor frequency of the spins confined to a nanoscale volume, and by modulating the phase of the drive, single-qubit quantum gates with fidelities approaching those for fault-tolerant quantum computing can be implemented. Such single-qubit gate operations require only tens of femto-Joules per gate operation and have lossless, purely magnetic field control. Their physical realization is also straightforward using foundry manufacturing techniques. 
    more » « less
  2. High-fidelity gate operations are essential to the realization of a fault-tolerant quantum computer. In addition, the physical resources required to implement gates must scale efficiently with system size. A longstanding goal of the superconducting qubit community is the tight integration of a superconducting quantum circuit with a proximal classical cryogenic control system. Here we implement coherent control of a superconducting transmon qubit using a Single Flux Quantum (SFQ) pulse driver cofabricated on the qubit chip. The pulse driver delivers trains of quantized flux pulses to the qubit through a weak capacitive coupling; coherent rotations of the qubit state are realized when the pulse-to-pulse timing is matched to a multiple of the qubit oscillation period. We measure the fidelity of SFQ-based gates to be ~95% using interleaved randomized benchmarking. Gate fidelities are limited by quasiparticle generation in the dissipative SFQ driver. We characterize the dissipative and dispersive contributions of the quasiparticle admittance and discuss mitigation strategies to suppress quasiparticle poisoning. These results open the door to integration of large-scale superconducting qubit arrays with SFQ control elements for low-latency feedback and stabilization. 
    more » « less
  3. Color centers in solids, such as the nitrogen-vacancy center in diamond, offer well-protected and well-controlled localized electron spins that can be employed in various quantum technologies. Moreover, the long coherence time of the surrounding spinful nuclei can enable a robust quantum register controlled through the color center.We design pulse sequence protocols that drive the electron spin to generate robust entangling gates with these nuclear memory qubits.We find that compared to using Carr-Purcell-Meiboom-Gill (CPMG) alone, Uhrig decoupling sequence and hybrid protocols composed of CPMG and Uhrig sequences improve these entangling gates in terms of fidelity, spin control range, and spin selectivity. We provide analytical expressions for the sequence protocols and also show numerically the efficacy of our method on nitrogen-vacancy centers in diamond. Our results are broadly applicable to color centers weakly coupled to a small number of nuclear spin qubits. 
    more » « less
  4. Abstract Color centers in solids, such as the nitrogen-vacancy center in diamond, offer well-protected and well-controlled localized electron spins that can be employed in various quantum technologies. Moreover, the long coherence time of the surrounding spinful nuclei can enable a robust quantum register controlled through the color center. We design pulse sequence protocols that drive the electron spin to generate robust entangling gates with these nuclear memory qubits. We find that compared to using Carr-Purcell-Meiboom-Gill (CPMG) alone, Uhrig decoupling sequence and hybrid protocols composed of CPMG and Uhrig sequences improve these entangling gates in terms of fidelity, spin control range, and spin selectivity. We provide analytical expressions for the sequence protocols and also show numerically the efficacy of our method on nitrogen-vacancy centers in diamond. Our results are broadly applicable to color centers weakly coupled to a small number of nuclear spin qubits. 
    more » « less
  5. Silicon-based spin qubits represent a promising technology for scalable quantum computing. However, the complex nature of this field, which requires a deep understanding of quantum mechanics, materials science, and nanoelectronics, poses a significant challenge in making it accessible to future engineers and scientists. Spin Quantum Gate Lab, a spin qubit simulation tool, is proposed in this paper to address this obstacle. This tool is designed to introduce key concepts of spin qubit to undergraduate students, enabling the simulation of single-qubit rotational gates and two-qubit controlled-phase gates. By providing hands-on experience with quantum gate operations, it effectively links theoretical quantum concepts to practical experience, fostering a deeper understanding of silicon-based quantum computing. 
    more » « less