skip to main content


Title: TimeStitch: Exploiting Slack to Mitigate Decoherence in Quantum Circuits
Quantum systems have the potential to demonstrate significant computational advantage, but current quantum devices suffer from the rapid accumulation of error that prevents the storage of quantum information over extended periods. The unintentional coupling of qubits to their environment and each other adds significant noise to computation, and improved methods to combat decoherence are required to boost the performance of quantum algorithms on real machines. While many existing techniques for mitigating error rely on adding extra gates to the circuit [ 13 , 20 , 56 ], calibrating new gates [ 50 ], or extending a circuit’s runtime [ 32 ], this article’s primary contribution leverages the gates already present in a quantum program without extending circuit duration. We exploit circuit slack for single-qubit gates that occur in idle windows, scheduling the gates such that their timing can counteract some errors. Spin-echo corrections that mitigate decoherence on idling qubits act as inspiration for this work. Theoretical models, however, fail to capture all sources of noise in Noisy Intermediate Scale Quantum devices, making practical solutions necessary that better minimize the impact of unpredictable errors in quantum machines. This article presents TimeStitch: a novel framework that pinpoints the optimum execution schedules for single-qubit gates within quantum circuits. TimeStitch, implemented as a compilation pass, leverages the reversible nature of quantum computation to boost the success of circuits on real quantum machines. Unlike past approaches that apply reversibility properties to improve quantum circuit execution [ 35 ], TimeStitch amplifies fidelity without violating critical path frontiers in either the slack tuning procedures or the final rescheduled circuit. On average, compared to a state-of-the-art baseline, a practically constrained TimeStitch achieves a mean 38% relative improvement in success rates, with a maximum of 106%, while observing bounds on circuit depth. When unconstrained by depth criteria, TimeStitch produces a mean relative fidelity increase of 50% with a maximum of 256%. Finally, when TimeStitch intelligently leverages periodic dynamical decoupling within its scheduling framework, a mean 64% improvement is observed over the baseline, relatively outperforming stand-alone dynamical decoupling by 19%, with a maximum of 287%.  more » « less
Award ID(s):
2016136
NSF-PAR ID:
10425506
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Quantum Computing
Volume:
4
Issue:
1
ISSN:
2643-6809
Page Range / eLocation ID:
1 to 27
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Running quantum programs is fraught with challenges on on today’s noisy intermediate scale quantum (NISQ) devices. Many of these challenges originate from the error characteristics that stem from rapid decoherence and noise during measurement, qubit connections, crosstalk, the qubits themselves, and transformations of qubit state via gates. Not only are qubits not “created equal”, but their noise level also changes over time. IBM is said to calibrate their quantum systems once per day and reports noise levels (errors) at the time of such calibration. This information is subsequently used to map circuits to higher quality qubits and connections up to the next calibration point. This work provides evidence that there is room for improvement over this daily calibration cycle. It contributes a technique to measure noise levels (errors) related to qubits immediately before executing one or more sensitive circuits and shows that just-in-time noise measurements can benefit late physical qubit mappings. With this just-in-time recalibrated transpilation, the fidelity of results is improved over IBM’s default mappings, which only uses their daily calibrations. The framework assess two major sources of noise, namely readout errors (measurement errors) and two-qubit gate/connection errors. Experiments indicate that the accuracy of circuit results improves by 3-304% on average and up to 400% with on-the-fly circuit mappings based on error measurements just prior to application execution. 
    more » « less
  2. We advocate for a fundamentally different way to perform quantum computation by using three-level qutrits instead of qubits. In particular, we substantially reduce the resource requirements of quantum computations by exploiting a third state for temporary variables (ancilla) in quantum circuits. Past work with qutrits has demonstrated only constant factor improvements, owing to the lg(3) binary-to-ternary compression factor. We present a novel technique using qutrits to achieve a logarithmic runtime decomposition of the Generalized Toffoli gate using no ancilla - an exponential improvement over the best qubit-only equivalent. Our approach features a 70× improvement in total two-qudit gate count over the qubit-only decomposition. This results in improvements for important algorithms for arithmetic and QRAM. Simulation results under realistic noise models indicate over 90% mean reliability (fidelity) for our circuit, versus under 30% for the qubit-only baseline. These results suggest that qutrits offer a promising path toward extending the frontier of quantum computers. 
    more » « less
  3. Variational Quantum Algorithms (VQA) are one of the most promising candidates for near-term quantum advantage. Traditionally, these algorithms are parameterized by rotational gate angles whose values are tuned over iterative execution on quantum machines. The iterative tuning of these gate angle parameters make VQAs more robust to a quantum machine’s noise profile. However, the effect of noise is still a significant detriment to VQA’s target estimations on real quantum machines — they are far from ideal. Thus, it is imperative to employ effective error mitigation strategies to improve the fidelity of these quantum algorithms on near-term machines.While existing error mitigation techniques built from theory do provide substantial gains, the disconnect between theory and real machine execution characteristics limit the scope of these improvements. Thus, it is critical to optimize mitigation techniques to explicitly suit the target application as well as the noise characteristics of the target machine.We propose VAQEM, which dynamically tailors existing error mitigation techniques to the actual, dynamic noisy execution characteristics of VQAs on a target quantum machine. We do so by tuning specific features of these mitigation techniques similar to the traditional rotation angle parameters -by targeting improvements towards a specific objective function which represents the VQA problem at hand. In this paper, we target two types of error mitigation techniques which are suited to idle times in quantum circuits: single qubit gate scheduling and the insertion of dynamical decoupling sequences. We gain substantial improvements to VQA objective measurements — a mean of over 3x across a variety of VQA applications, run on IBM Quantum machines.More importantly, while we study two specific error mitigation techniques, the proposed variational approach is general and can be extended to many other error mitigation techniques whose specific configurations are hard to select a priori. Integrating more mitigation techniques into the VAQEM framework in the future can lead to further formidable gains, potentially realizing practically useful VQA benefits on today’s noisy quantum machines. 
    more » « less
  4. Due to the limited decoherence time of qubits in the Noisy Intermediate-Scale Quantum (NISQ) era, optimizing the size and depth of logical quantum circuits for efficient implementation on sparsely connected physical architectures is crucial. In this work, we extend the Approximate Token Swapping (ATS) algorithm by incorporating qubit priority and the size of permutation cycles to be routed. We refer to this algorithm as Priority-ATS (PATS), which also considers CNOT gate errors while constructing the routing schedule for the qubits. We provide theoretical justification for the superior effectiveness of PATS over ATS and experimentally demonstrate its ability to improve the fidelity of the output state. Furthermore, we use depolarizing error channels to model the noisy CNOT gates, where each adjacent qubit pair has a distinct error rate. By employing realistic error rates, we showcase the robust improvement in output fidelity when using PATS as opposed to a noise-oblivious ATS routing scheme. 
    more » « less
  5. Abstract

    We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the corresponding noiseless output distribution$$p_{\text {ideal}}$$pidealshrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmarkFthat measures this correlation behaves as$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$F=exp(-2sϵ±O(sϵ2)), where$$\epsilon $$ϵis the probability of error per circuit location andsis the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the uniform distribution$$p_{\text {unif}}$$punifdecays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$pnoisyFpideal+(1-F)punif. In other words, although at least one local error occurs with probability$$1-F$$1-F, the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$O(F\epsilon \sqrt{s})$$O(Fϵs). Thus, the “white-noise approximation” is meaningful when$$\epsilon \sqrt{s} \ll 1$$ϵs1, a quadratically weaker condition than the$$\epsilon s\ll 1$$ϵs1requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$s \ge \Omega (n\log (n))$$sΩ(nlog(n)), which corresponds to onlylogarithmic depthcircuits, and if, additionally, the inverse error rate satisfies$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ϵ-1Ω~(n), which is needed to ensure errors are scrambled faster thanFdecays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds.

     
    more » « less