Haldane topological materials contain unique antiferromagnetic chains with symmetry-protected energy gaps. Such materials have potential applications in spintronics and future quantum computers. Haldane topological solids typically consist of spin-1 chains embedded in extended three-dimensional (3D) crystal structures. Here, we demonstrate that [Ni(μ−4,4′-bipyridine)(μ-oxalate)]n(NiBO) instead adopts a two-dimensional (2D) metal-organic framework (MOF) structure of Ni2+spin-1 chains weakly linked by 4,4′-bipyridine. NiBO exhibits Haldane topological properties with a gap between the singlet ground state and the triplet excited state. The latter is split by weak axial and rhombic anisotropies. Several experimental probes, including single-crystal X-ray diffraction, variable-temperature powder neutron diffraction (VT-PND), VT inelastic neutron scattering (VT-INS), DC susceptibility and specific heat measurements, high-field electron spin resonance, and unbiased quantum Monte Carlo simulations, provide a detailed, comprehensive characterization of NiBO. Vibrational (also known as phonon) properties of NiBO have been probed by INS and density-functional theory (DFT) calculations, indicating the absence of phonons near magnetic excitations in NiBO, suppressing spin-phonon coupling. The work here demonstrates that NiBO is indeed a rare 2D-MOF Haldane topological material.
This content will become publicly available on June 1, 2024
- Award ID(s):
- 2154627
- Publication Date:
- NSF-PAR ID:
- 10410417
- Journal Name:
- Journal of the American Chemical Society
- ISSN:
- 0002-7863
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Strong electronic interactions can drive a system into a state with a symmetry breaking. Lattice frustration or competing interactions tend to prevent symmetry breaking, leading to quantum disordered phases. In spin systems frustration can produce a spin liquid state. Frustration of a charge degree of freedom also can result in various exotic states, however, experimental data on these effects is scarce. In this work we demonstrate how in a Mott insulator on a weakly anisotropic triangular lattice a charge ordered state melts on cooling down to low temperatures. Raman scattering spectroscopy finds that
-(BEDT-TTF)$$\kappa$$ Hg(SCN)$${}_{2}$$ Cl enters an insulating “dipole solid” state at$${}_{2}$$ , but below$$T=30\,{\mathrm{K}}$$ the order melts, while preserving the insulating energy gap. Based on these observations, we suggest a phase diagram relevant to other quantum paraelectric materials.$$T=15\,{\mathrm{K}}$$ -
Abstract Organic semiconductors with high-spin ground states are fascinating because they could enable fundamental understanding on the spin-related phenomenon in light element and provide opportunities for organic magnetic and quantum materials. Although high-spin ground states have been observed in some quinoidal type small molecules or doped organic semiconductors, semiconducting polymers with high-spin at their neutral ground state are rarely reported. Here we report three high-mobility semiconducting polymers with different spin ground states. We show that polymer building blocks with small singlet-triplet energy gap (Δ E S-T ) could enable small Δ E S-T gap and increase the diradical character in copolymers. We demonstrate that the electronic structure, spin density, and solid-state interchain interactions in the high-spin polymers are crucial for their ground states. Polymers with a triplet ground state ( S = 1) could exhibit doublet ( S = 1/2) behavior due to different spin distributions and solid-state interchain spin-spin interactions. Besides, these polymers showed outstanding charge transport properties with high hole/electron mobilities and can be both n- and p-doped with superior conductivities. Our results demonstrate a rational approach to obtain high-mobility semiconducting polymers with different spin ground states.
-
Abstract Aqueous organic redox flow batteries (AORFBs) have received increasing attention as an emergent battery technology for grid‐scale renewable energy storage. However, physicochemical properties of redox‐active organic electrolytes remain fine refinement to maximize their performance in RFBs. Herein, we report a carboxylate functionalized viologen derivative, N,N′‐dibutyrate‐4,4′‐bipyridinium,
(CBu)2V , as a highly stable, high capacity anolyte material under near pH neutral conditions.(CBu)2V can achieve solubility of 2.1 M and display a reversible, kinetically fast reduction at −0.43 V vs NHE at pH 9. DFT studies revealed that the high solubility of(CBu)2V is attributed to its high molecular polarity while its negative reduction potential is benefitted from electron‐donating carboxylate groups. A 0.89 V (CBu)2V /(NH)4Fe(CN)6AORFB demonstrated exceptional energy storage performance, specifically, 100 % capacity retention with a discharge energy density of 9.5 Wh L−1for 1000 cycles, power densities of up to 85 mW cm−2, and an energy efficiency of 70 % at 60 mA cm−2.(CBu)2V not only represents the most capacity dense viologen with pendant ionic groups and also exhibits the longest (1200 hours or 50 days) and the most stable flow battery performance to date. -
Abstract Aqueous organic redox flow batteries (AORFBs) have received increasing attention as an emergent battery technology for grid‐scale renewable energy storage. However, physicochemical properties of redox‐active organic electrolytes remain fine refinement to maximize their performance in RFBs. Herein, we report a carboxylate functionalized viologen derivative, N,N′‐dibutyrate‐4,4′‐bipyridinium,
(CBu)2V , as a highly stable, high capacity anolyte material under near pH neutral conditions.(CBu)2V can achieve solubility of 2.1 M and display a reversible, kinetically fast reduction at −0.43 V vs NHE at pH 9. DFT studies revealed that the high solubility of(CBu)2V is attributed to its high molecular polarity while its negative reduction potential is benefitted from electron‐donating carboxylate groups. A 0.89 V (CBu)2V /(NH)4Fe(CN)6AORFB demonstrated exceptional energy storage performance, specifically, 100 % capacity retention with a discharge energy density of 9.5 Wh L−1for 1000 cycles, power densities of up to 85 mW cm−2, and an energy efficiency of 70 % at 60 mA cm−2.(CBu)2V not only represents the most capacity dense viologen with pendant ionic groups and also exhibits the longest (1200 hours or 50 days) and the most stable flow battery performance to date.