skip to main content


Title: Single‐stage chemical recycling of plastic waste to yield durable composites via a tandem transesterification‐thiocracking process
Abstract

Environmental contamination by plastic waste is a growing threat to the environment and human health. Unfortunately, most post‐consumer plastics are still disposed of in landfills, even plastics that could be easily recycled via simple chemical processes. This disconnect between technology and implementation is partly due to the economic barrier posed by multi‐step processes that convert plastic waste into commodity goods. There is an urgent need for green methods to convert plastic waste directly into marketable commodities via simple processes. Herein we report a simple, single‐stage process to chemically recycle poly(ethylene terephthalate) (PET) to yield composites having thermal and mechanical properties that are competitive with commercial structural materials like Portland cement. In this protocol, a mixture of PET and geraniol are heated with elemental sulfur. In this process, transesterification between geraniol and PET with concomitant thiocracking of the PET backbone leads to the formation of a highly‐crosslinked sulfur–PET–geraniol (SPG) network composite. The composite exhibited compressive strength (23.1 MPa) greater than that required for Portland cement to be used in building foundations. This new, single‐stage chemical recycling strategy thus employs a bio‐olefin and waste sulfur to convert PET waste into a durable composite that could serve as a sustainable alternative to traditional cements.

 
more » « less
Award ID(s):
2203669
NSF-PAR ID:
10410496
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
61
Issue:
9
ISSN:
2642-4150
Page Range / eLocation ID:
p. 787-793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite improvements in chemical recycling, most post‐consumer plastics are still deposited in landfills where they pose a significant threat to ecological health. Herein we report a two‐stage method for chemically recycling poly(ethylene terephthalate) (PET) using terpenoids and waste sulfur to yield composites. In this method, post‐consumer PET (from beverage bottles) undergoes transesterification with a terpenoid alcohol (citronellol or geraniol) to yield low‐molecular PET oligomers. The terpene‐derived alkenes in these PET oligomer derivatives then served as reaction sites for inverse vulcanization with 90 wt% elemental sulfur to form compositeCPS(using citronellol) orGPS(using geraniol). Composition, mechanical, thermal, and morphological properties were characterized by NMR spectroscopy, MALDI, FT‐IR spectroscopy, compressive and flexural strength analysis, TGA, DSC, elemental analysis, and SEM/EDX. The compositesCPS(compressive strength = 5.20 MPa, flexural strength = 3.10 MPa) andGPS(compressive strength = 5.8 MPa, flexural strength = 2.77 MPa) showed mechanical strengths comparable to those of commercial bricks (classification C62 for general building). The approach delineated herein thus represents a method to chemically recycle waste plastic with industrial waste sulfur and plant‐derived terpenoids to yield composites having favorable properties comparable to existing building materials.

     
    more » « less
  2. Herein we report a method for the chemical recycling of poly(ethylene terephthalate) (PET) by a three-stage process employing sustainably-sourced organic materials and industrial byproduct sulfur. In this protocol, PET was subject to glycolysis with diethylene glycol to yield low molecular weight oligomers with hydroxyl end groups. The glycolyzed PET (GPET) was then reacted with oleoyl chloride to yield esterified PET (EPET) containing vulcanizable olefin units. The oligomers constituting GPET and EPET were elucidated by MALDI-TOF spectrometry. EPET underwent inverse vulcanization with elemental sulfur (90 wt%) for 35 min or 24 h to yield xPES or mPES, respectively. The composition, thermal, morphological, thermal and mechanical properties were characterized. The composites exhibited good to excellent mechanical properties that were improved significantly by extending the reaction time from 35 min used to prepare xPES (compressive strength = 10.5 MPa, flexural strength = 2.7 MPa) to 24 h used to prepare mPES (compressive strength = 26.9 MPa, flexural strength = 7.7 MPa). Notably, the compressive and flexural strengths of mPES represent 158% and 208% of the values required for residential building foundations made from traditional materials such as ordinary Portland cement. The three-stage approach delineated herein thus represents a way to mediate chemical recycling of waste plastic with green coreagents to yield composites having mechanical properties competitive with existing commercial structural materials. 
    more » « less
  3. Abstract

    A three‐stage route to chemically upcycle post‐consumer poly(ethylene terephthalate) (PET) to produce high compressive strength composites is reported. This procedure involves initial glycolysis with diethylene glycol to produce a mixture (GPET) comprising oligomers of 2–7 terephthalate units followed by trans/esterification of GPET with fatty acid chains supplied by brown grease, an agricultural by‐product of animal fat of relatively low nutritional or fuel value. This process yields PGB comprising a mixture of mono‐terephthalate ester derivatives. The olefin units provided by unsaturated fatty acid chains in brown grease were crosslinked by an inverse vulcanization reaction with elemental sulfur to give composites GBSx(x = wt% S, varied from 80%–90%). The compressive strengths of GBS80(27.5 ± 2.6 MPa) and GBS90(19.2 ± 0.8 MPa) exceed the compressive strength required of ordinary Portland cement (17 MPa) for its use in residential building foundations. The current route represents a way to repurpose waste plastic, energy sector by‐product sulfur, and agricultural by‐product brown grease to give high strength composites with mechanical properties suggesting their possible use to replace less sustainably sourced legacy structural materials.

     
    more » « less
  4. Environmental contamination with bisphenol A (BPA), produced via degradation of plastic waste, constitutes a major hazard for human health due to the ability of BPA to bind to estrogen receptors and thereby induce hormonal imbalances. Unfortunately, BPA cannot be degraded to a “safe” material without breaking C–C σ-bonds, and existing methods required to break these bonds employ petroleum-derived chemicals and environmentally-harmful metal ions. Therefore, there is an urgent need to develop new “green” methods to break BPA into monoaryl compounds without the use of such reagents and, ideally, convert those monoaryls into valuable materials that can be productively utilized instead of being discarded as chemical waste. Herein we report a new mechanism by which O , O ′-dimethyl bisphenol A (DMBPA), obtained from BPA-containing plastic via low-temperature recycling, undergoes C–C σ-bond cleavage via thiocracking, a reaction with elemental sulfur at temperatures lower than those used in many thermal plastic recycling techniques ( e.g. , <325 °C). Mechanistic analyses and microstructural characterization of the DMBPA-derived materials produced by thiocracking elucidated multiple subunits comprising monoaryl species. Impressively, analyses of recoverable organics revealed that >95% of DMBPA had been broken down into monoaryl components. Furthermore, the DMBPA–sulfur composite produced by thiocracking (BC90) exhibited compressive strength (∼20 MPa) greater than those of typical Portland cements. Consequently, this new thiocracking method creates the ability to destroy the estrogen receptor-binding components of BPA wastes using greener techniques and, simultaneously, to produce a mechanically-robust composite material that represents a sustainable alternative to Portland cements. 
    more » « less
  5. null (Ed.)
    Fossil fuel refining produces over 70 Mt of excess sulfur annually from for which there is currently no practical use. Recently, methods to convert waste sulfur to recyclable and biodegradable polymers have been delineated. In this report, a commercial bisphenol A (BPA) derivative, 2,2′,5,5′-tetrabromo(bisphenol A) (Br4BPA), is explored as a potential organic monomer for copolymerization with elemental sulfur by RASP (radical-induced aryl halide-sulfur polymerization). Resultant copolymers, BASx (x = wt% sulfur in the monomer feed, screened for values of 80, 85, 90, and 95) were characterized by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Analysis of early stage reaction products and depolymerization products support proposed S–Caryl bond formation and regiochemistry, while fractionation of BASx reveals a sulfur rank of 3–6. Copolymers having less organic cross-linker (5 or 10 wt%) in the monomer feed were thermoplastics, whereas thermosets were accomplished when 15 or 20 wt% of organic cross-linker was used. The flexural strengths of the thermally processable samples (>3.4 MPa and >4.7 for BAS95 and BAS90, respectively) were quite high compared to those of familiar building materials such as portland cement (3.7 MPa). Furthermore, copolymer BAS90 proved quite resistant to degradation by oxidizing organic acid, maintaining its full flexural strength after soaking in 0.5 M H2SO4 for 24 h. BAS90 could also be remelted and recast into shapes over many cycles without any loss of mechanical strength. This study on the effect of monomer ratio on properties of materials prepared by RASP of small molecular aryl halides confirms that highly cross-linked materials with varying physical and mechanical properties can be accessed by this protocol. This work is also an important step towards potentially upcycling BPA from plastic degradation and sulfur from fossil fuel refining. 
    more » « less