skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Waste Polyethylene Terephthalate (PET) as a Partial Replacement of Aggregates in Sustainable Concrete
Concrete use is enhanced daily due to infrastructure development, but it has adverse impacts on the environment. Modern lifestyles have led to the increased use of plastic, and, for households, polyethylene terephthalate (PET) plastics are used. However, PET is non-biodegradable and causes adverse impacts on the environment and marine health. So, there is a need to minimize the amount of plastic waste by finding an alternative use for the waste. Our study focuses on creating sustainable concrete by utilizing PET-based plastic waste as a partial substitution for aggregates, aiming to use this concrete for various low-load-bearing construction applications. From our phase analysis study, no adverse effects were found on cement phase formation. We also found that up to 10 wt.% PET incorporation leads to acceptable compressive strength reduction as per ASTM guidelines. To enhance adhesion, the PET was roughened, and, from FESEM, we found effective adhesion of PET waste into the cement matrix. We believe that this sustainable concrete will not only contribute to waste reduction but also promote eco-friendly construction material development.  more » « less
Award ID(s):
2415385
PAR ID:
10620928
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Construction Materials
Volume:
4
Issue:
4
ISSN:
2673-7108
Page Range / eLocation ID:
738 to 747
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Environmental contamination by plastic waste is a growing threat to the environment and human health. Unfortunately, most post‐consumer plastics are still disposed of in landfills, even plastics that could be easily recycled via simple chemical processes. This disconnect between technology and implementation is partly due to the economic barrier posed by multi‐step processes that convert plastic waste into commodity goods. There is an urgent need for green methods to convert plastic waste directly into marketable commodities via simple processes. Herein we report a simple, single‐stage process to chemically recycle poly(ethylene terephthalate) (PET) to yield composites having thermal and mechanical properties that are competitive with commercial structural materials like Portland cement. In this protocol, a mixture of PET and geraniol are heated with elemental sulfur. In this process, transesterification between geraniol and PET with concomitant thiocracking of the PET backbone leads to the formation of a highly‐crosslinked sulfur–PET–geraniol (SPG) network composite. The composite exhibited compressive strength (23.1 MPa) greater than that required for Portland cement to be used in building foundations. This new, single‐stage chemical recycling strategy thus employs a bio‐olefin and waste sulfur to convert PET waste into a durable composite that could serve as a sustainable alternative to traditional cements. 
    more » « less
  2. Globally, the production of concrete is responsible for 5% to 8% of anthropogenic CO2 emissions. Cement, a primary ingredient in concrete, forms a glue that holds concrete together when combined with water. Cement embodies approximately 90% of the greenhouse gas emissions associated with concrete production, and decarbonization methods focus primarily on cement production. But mitigation strategies can accrue throughout the concrete life cycle. Decarbonization strategies in cement manufacture, use, and disposal can be rapidly implemented to address the global challenge of equitably meeting societal needs and climate goals. This review describes (a) the development of our reliance on cement and concrete and the consequent environmental impacts, (b) pathways to decarbonization throughout the concrete value chain, and (c) alternative resources that can be leveraged to further reduce emissions while meeting global demands. We close by highlighting a research agenda to mitigate the climate damages from our continued dependence on cement. 
    more » « less
  3. Plastic upcycling, which involves making plastic-derived products with unique or improved properties from discarded plastic materials, is a promising alternative to recycling and disposal to help reduce the overall production of waste. However, recycled and reused materials typically have inferior mechanical, thermal, optical, and barrier properties compared with virgin plastics. Upcycled plastic materials could improve these properties while addressing future waste accumulation. In this study, we use waste poly(ethylene terephthalate) (PET) collected from disposable food packaging to create a repurposed plastic graphene oxide (GO) composite with a goal of upcycling. We developed a one-pot “dynamic depolymerization” to break down PET in the presence of GO and successfully enabled transesterification of the polymer onto GO. Covalent attachment of PET onto GO and tailorable plastic content was confirmed by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. These covalent composites (PET-GO) were found to be relatively impermeable to water vapor, showing promise for applications in packaging materials. Aqueous degradation experiments on the composite materials demonstrated that, in bulk conditions, PET-GOs remain mechanically robust while in contact with water over appropriate time scales for packaging applications, while beginning to break down in accelerated conditions. The use of depolymerization methods to promote polymer grafting concurrently with polymer deconstruction could provide a more general method for grafting waste polymers onto oxidized carbonaceous substrates with further study. 
    more » « less
  4. Abstract The global production and consumption of plastics has increased at an alarming rate over the last few decades. The accumulation of pervasive and persistent waste plastic has concomitantly increased in landfills and the environment. The societal, ecological, and economic problems of plastic waste/pollution demand immediate and decisive action. In 2015, only 9% of plastic waste was successfully recycled in the United States. The major current recycling processes focus on the mechanical recycling of plastic waste; however, even this process is limited by the sorting/pretreatment of plastic waste and degradation of plastics during the process. An alternative to mechanical processes is chemical recycling of plastic waste. Efficient chemical recycling would allow for the production of feedstocks for various uses including fuels and chemical feedstocks to replace petrochemicals. This review focuses on the most recent advances for the chemical recycling of three major polymers found in plastic waste: PET, PE, and PP. Commercial processes for recycling hydrolysable polymers like polyesters or polyamides, polyolefins, or mixed waste streams are also discussed. 
    more » « less
  5. Nutrient recovery from waste is a promising strategy to conserve inputs while reducing nutrient discharge to the natural environment. Multiple waste streams have shown promise with respect to nutrient recovery. Multiple technologies also show promise at a pilot or full scale. These technologies, however, must not exacerbate other environmental issues, with excessive energy use, unsustainable material extraction (e.g., mineral extraction, cement use), or toxin release into the environment. Such technologies must also be feasible from economic and social perspectives. Work, therefore, should focus on both improving our current suite of available technologies for nutrient recovery from waste and framing policies that blend affordability with incentives, thereby fostering an environment conducive to innovation and adoption of sustainable approaches. This review considers the issues associated with nutrient recovery from waste, including technical feasibility and economic, environmental, and social factors, and identifies current knowledge gaps and emerging opportunities for nutrient waste recovery. 
    more » « less