skip to main content


This content will become publicly available on May 1, 2024

Title: Disturbance alters transience but nutrients determine equilibria during grassland succession with multiple global change drivers
Abstract

Disturbance and environmental change may cause communities to converge on a steady state, diverge towards multiple alternative states or remain in long‐term transience. Yet, empirical investigations of successional trajectories are rare, especially in systems experiencing multiple concurrent anthropogenic drivers of change. We examined succession in old field grassland communities subjected to disturbance and nitrogen fertilization using data from a long‐term (22‐year) experiment. Regardless of initial disturbance, after a decade communities converged on steady states largely determined by resource availability, where species turnover declined as communities approached dynamic equilibria. Species favoured by the disturbance were those that eventually came to dominate the highly fertilized plots. Furthermore, disturbance made successional pathways more direct revealing an important interaction effect between nutrients and disturbance as drivers of community change. Our results underscore the dynamical nature of grassland and old field succession, demonstrating how community properties such as diversity change through transient and equilibrium states.

 
more » « less
Award ID(s):
2019528 1831944
NSF-PAR ID:
10410502
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
26
Issue:
7
ISSN:
1461-023X
Page Range / eLocation ID:
p. 1132-1144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Insect herbivory is one of the major drivers of seedling mortality in the tropics and influences plant abundances and community composition. Anthropogenic disturbance can alter patterns of insect herbivory with potential consequences on plant communities in restored forests. We planted seedlings of early‐ and later‐stage successional tree species in 13–15‐year‐old restored and remnant tropical forests. We then either excluded insect herbivores or left seedlings exposed to examine how insect herbivory‐affected seedling mortality. Early‐successional seedlings experienced similar decreases in mortality when insect herbivores were excluded from both restored and remnant forest sites, but this effect was smaller and driven by only a few species in restored forests. Later‐successional seedlings experienced a stronger decrease in mortality between open and insect‐excluded treatments in remnant than restored sites. Our results suggest that herbivory‐driven seedling mortality is lower in restored forests, particularly for later‐successional seedlings. Results are encouraging from a restoration perspective because recruitment of later‐successional seedlings is a key component of ecosystem recovery. However, if reductions in seedling mortality continue over the long term, this may affect tree community composition as succession progresses.

     
    more » « less
  2. Earth’s ancient grasslands and savannas—hereafter old-growth grasslands—have long been viewed by scientists and environmental policymakers as early successional plant communities of low conservation value. Challenging this view, emerging research suggests that old-growth grasslands support substantial biodiversity and are slow to recover if destroyed by human land uses (e.g., tillage agriculture, plantation forestry). But despite growing interest in grassland conservation, there has been no global test of whether old-growth grasslands support greater plant species diversity than secondary grasslands (i.e., herbaceous communities that assemble after destruction of old-growth grasslands). Our synthesis of 31 studies, including 92 timepoints on six continents, found that secondary grasslands supported 37% fewer plant species than old-growth grasslands (log response ratio = −0.46) and that secondary grasslands typically require at least a century, and more often millennia (projected mean 1,400 y), to recover their former richness. Young (<29 y) secondary grasslands were composed of weedy species, and even as their richness increased over decades to centuries, secondary grasslands were still missing characteristic old-growth grassland species (e.g., long-lived perennials). In light of these results, the view that all grasslands are weedy communities, trapped by fire and large herbivores in a state of arrested succession, is untenable. Moving forward, we suggest that ecologists should explicitly consider grassland assembly time and endogenous disturbance regimes in studies of plant community structure and function. We encourage environmental policymakers to prioritize old-growth grassland conservation and work to elevate the status of old-growth grasslands, alongside old-growth forests, in the public consciousness.

     
    more » « less
  3. Abstract

    Studies of succession have a long history in ecology, but rigorous tests of general, unifying principles are rare. One barrier to these tests of theory is the paucity of longitudinal studies that span the broad gradients of disturbance severity that characterize large, infrequent disturbances. The cataclysmic eruption of Mount St. Helens (Washington, USA) in 1980 produced a heterogeneous landscape of disturbance conditions, including primary to secondary successional habitats, affording a unique opportunity to explore how rates and patterns of community change relate to disturbance severity, post‐eruption site conditions and time.

    In this novel synthesis, we combined data from three long‐term (c.30‐year) studies to compare rates and patterns of community change across three ‘zones’ representing a gradient of disturbance severity: primary successional blast zone, secondary successional tree blowdown/standing snag zone and secondary successional intact forest canopy/tephra deposit zone.

    Consistent with theory, rates of change in most community metrics (species composition, species richness, species gain/loss and rank abundance) decreased with time across the disturbance gradient. Surprisingly, rates of change were often greatest at intermediate‐severity disturbance and similarly low at high‐ and low‐severity disturbance. There was little evidence of compositional convergence among or within zones, counter to theory. Within zones, rates of change did not differ among ‘site types’ defined by pre‐ or post‐eruption site characteristics (disturbance history, legacy effects or substrate characteristics).

    Synthesis.The hump‐shaped relationships with disturbance severity runs counter to the theory predicting that community change will be slower during primary than during secondary succession. The similarly low rates of change after high‐ and low‐severity disturbance reflect differing sets of controls: seed limitation and abiotic stress in the blast zone vs. vegetative re‐emergence and low light in the tephra zone. Sites subjected to intermediate‐severity disturbance were the most dynamic, supporting species with a greater diversity of regenerative traits and seral roles (ruderal, forest and non‐forest). Succession in this post‐eruption landscape reflects the complex, multifaceted nature of volcanic disturbance (including physical force, heating and burial) and the variety of ways in which biological systems can respond to these disturbance effects. Our results underscore the value of comparative studies of long‐term, ecological processes for testing the assumptions and predictions of successional theory.

     
    more » « less
  4. Abstract

    Metacommunity theory predicts that the relative importance of regional and local processes structuring communities will change over ecological succession. Determining effects of these processes on taxonomic and evolutionary diversity in spatially structured freshwater habitats of different successional stages may greatly improve understanding of the maintenance of diversity across temporal and spatial scales. In this study, we evaluated crayfish diversity at local and regional scales in pond metacommunities undergoing secondary succession from beaver (Castor canadensis) disturbance. Following theoretical predictions from metacommunity ecology of the increasing importance of local processes over succession, we hypothesised a decline in crayfish local and β diversity over succession from stronger local structuring as the older ponds may provide less suitable habitat than streams.

    Crayfish species and phylogenetic diversity were evaluated in beaver pond metacommunities and reference headwater streams located in three catchment regions. DNA sequences from the mitochondrial cytochrome oxidase I gene were used to assign crayfish to species for community and phylogenetic diversity tests. Local and β diversity were contrasted across beaver ponds ranging in age from 24 to 70 years and as a function of metacommunity processes.

    Counter to predictions, local species diversity among streams and the successional stages of ponds categorised by age class (24–39 years; 42–57 years; 60–70 years) did not differ, but community and phylogenetic convergence occurred in the oldest pond ecosystems. Crayfish community composition differed between the youngest and oldest ponds, resulting from higher abundance in the youngest ponds and community convergence in the oldest ponds. The association between community composition and the environment was strongest in streams and decoupled with pond age. In contrast, the correlation between intraspecific haplotype composition and the environment increased over succession. Among the three metacommunities, the regional crayfish species diversity arose from a combination of the temporal and environmental drivers from beaver‐constructed ecosystems and dispersal limitation within catchments.

    This study represents the first investigation of the taxonomic and phylogenetic diversity response to the successional stages of beaver pond metacommunities. The detection of differential crayfish composition and haplotype sorting to pond age suggests a role for local structuring and further indicates that future studies should acknowledge succession in shaping species diversity at local and regional scales. Dispersal limitation within catchment regions probably contributes to the evolution of crayfish species diversity in metacommunities and the overall maintenance of biodiversity.

    The results support a transition in community and freshwater ecology from a recent emphasis on spatial processes towards the integration of temporal drivers to better identify regulators of taxonomic and phylogenetic diversity across scales.

     
    more » « less
  5. Abstract

    The plant microbiome is critical to plant health and is degraded with anthropogenic disturbance. However, the value of re‐establishing the native microbiome is rarely considered in ecological restoration. Arbuscular mycorrhizal (AM) fungi are particularly important microbiome components, as they associate with most plants, and later successional grassland plants are strongly responsive to native AM fungi.

    With five separate sites across the United States, we inoculated mid‐ and late successional plant seedlings with one of three types of native microbiome amendments: (a) whole rhizosphere soil collected from local old‐growth, undisturbed grassland communities in Illinois, Kansas or Oklahoma, (b) laboratory cultured AM fungi from these same old‐growth grassland sites or (c) no microbiome amendment. We also seeded each restoration with a diverse native seed mixture. Plant establishment and growth was followed for three growing seasons.

    The reintroduction of soil microbiome from native ecosystems improved restoration establishment.

    Including only native arbuscular mycorrhizal fungal communities produced similar improvements in plant establishment as what was found with whole soil microbiome amendment. These findings were robust across plant functional groups.

    Inoculated plants (amended with either AM fungi or whole soil) also grew more leaves and were generally taller during the three growing seasons.

    Synthesis and applications. Our research shows that mycorrhizal fungi can accelerate plant succession and that the reintroduction of both whole soil and laboratory cultivated native mycorrhizal fungi can be used as tools to improve native plant restoration following anthropogenic disturbance.

     
    more » « less