skip to main content


Title: The role of calcite mineral elastic moduli in carbonate rock physics
Rock-physics models for carbonate reservoirs assume that the mineral elastic moduli are known variables. A review of publications reveals a range of values for calcite that are out of date and misleading. We present a robust compilation for future investigations. We subsequently discuss the application of calcite elastic moduli for rock-physics modeling and interpretation of wireline data through a case study data set from an offshore Canada carbonate reservoir. The data set exhibits an offset between the zero-porosity intercept and the calcite elastic moduli values. Our experience indicates that this phenomenon is present in many wireline data sets from carbonate reservoirs around the world. We demonstrate that the data can be reconciled to the mineral elastic moduli through the interpretation of microcracks in the formation (defined by a crack density of 0.06). Understanding the microcrack effect in relatively low-porosity formations is important for the correct calibration of pore microstructure parameters and for fluid-substitution calculations. Results in the case study data set show a relatively high sensitivity to changes in fluid saturation. The sensitivity can be reduced through the use of effective mineral elastic moduli that are derived from the data. We justify the effective mineral elastic moduli as a representation of the mineral moduli plus microcracks. The effective mineral elastic moduli are proposed as a relatively simple method to constrain the fluid substitution calculations in low-porosity formations where microcracks are present.  more » « less
Award ID(s):
1836852
NSF-PAR ID:
10410636
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Leading Edge
Volume:
42
Issue:
4
ISSN:
1070-485X
Page Range / eLocation ID:
277 to 284
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Limestone microporosity is ubiquitous and extensively developed in most Phanerozoic limestones. From an economic perspective, microporosity is important because it contributes substantially to the carbonate pore system, which can host significant volumes of water and hydrocarbons. Therefore, determining the presence and distribution of limestone micropores is necessary for accurate hydrocarbon estimations, reservoir characterization, and fluid flow simulations. From an academic standpoint, microporosity is important because its genesis is intimately linked with the mineralogical stabilization of metastable sediments, a fundamental process in carbonate diagenesis. Many types of micropores contribute to what has been referred to as microporosity, but the vast majority is hosted among low-magnesium calcite (LMC) microcrystals that are present in limestone matrix and allochems. Geochemical, textural, and mineralogical data from natural settings and laboratory experiments indicate that LMC microcrystals are diagenetic in origin. More specifically, these data support a diagenetic model of mineralogical stabilization that involves dissolution of precursor sediments dominated by aragonite and high-magnesium calcite (HMC) minerals, and precipitation of LMC microcrystal cements. The stabilization process is inferred to take place in the meteoric, marine, and burial diagenetic realms. Although it has not been directly observed, carbon and oxygen isotopes, as well as trace element data suggest that LMC microcrystals form during burial diagenesis in marine-like fluids. Evidence suggests that porosity is not generated during this dissolution-precipitation process, but rather inherited from the precursor sediments. The final arrangement of the micropores in a limestone, however, depends on the precise diagenetic pathway. LMC microcrystals exhibit a range of microcrystalline textures that are classified on the basis of crystal morphology and size. The three main textural classes - granular (framework), fitted (mosaic), and clustered - have been recognized across a wide range of ages, depositional settings, burial depths, and precursor types, and are characterized by distinct petrophysical properties, such as porosity, permeability, and pore-throat size. Observations from modern sediments also support the hypothesis that LMC microcrystals develop from aragonite and HMC dominated lime mud. The origin of lime mud has been extensively studied but still highly debated. Of particular interest to the discussion of microporosity are proposed secular variations in the dominant mineralogy of carbonate sediments through the Phanerozoic. Microporous limestones comprised of LMC microcrystals are equally abundant during times of aragonite seas and calcite seas, which suggests that no special mineral precursor is required. Microporous textures are also observed in deep marine chalks where micropores are hosted between chalk constituents. Unlike shallow marine limestones, deep marine sediments start out as mostly LMC therefore mineralogical stabilization is not a significant process in chalk diagenesis. 
    more » « less
  2. null (Ed.)
    Magnesium (Mg) in natural waters plays a critical role in governing carbonate mineral formation, dissolution, and diagenesis. Previous laboratory experiments show that Mg can strongly inhibit direct calcite precipitation as well as aragonite to calcite diagenetic transformation. Data from natural settings, however, suggest that diagenetic calcite in most Phanerozoic limestones has formed in the shallow marine burial realm in the presence of ample Mg. Thus, the diagenetic conditions under which aragonite-rich sediments convert to calcite-rich limestones are poorly understood. Here, we present data from laboratory experiments whereby aragonite is converted to calcite at 70◦C in Mg-bearing solutions to investigate the effects of fluid:solid ratio (F:S), which varies greatly across diagenetic environments, on Mg inhibition and incorporation in calcite. Our data show that not only can the transformation of aragonite to calcite occur in solutions with higher [Mg] than previously shown possible in laboratory experiments, but that progressively lower F:S increase the rate at which aragonite stabilizes to calcite. For example, in experiments with an F:S of 0.3 mL/g, which corresponds to sediments in a closed system with 50% porosity, aragonite stabilizes to calcite in solution with [Mg]=30 mM (Mg/Ca=5.14) when an initial high degree of undersaturation with respect to aragonite is used and in a solution with [Mg]=20 (Mg/Ca=5.14) when a low degree of undersaturation is used. In contrast, aragonite does not stabilize to calcite after nearly 3000 h in experiments with an F:S of 100 mL/g, which is more typical of an open system, even in a solution with [Mg]=5 mM (Mg/Ca=5.14) regardless of the degree of undersaturation. Our results also show that the amount of Mg incorporated into calcite products increases linearly with the increase of F:S. Collectively, these observations further point to F:S as an important factor in carbonate diagenesis with broad implications. First, the observations that transformation of aragonite to calcite is inhibited at high [Mg] and F:S imply that calcite precipitation is unlikely to occur in marine diagenetic environments that are in direct hydrologic contact with seawater. This leaves aragonite dissolution as the dominant diagenetic process in these environments, which may represent an underrated source of alkalinity to the open ocean. Second, transformation from aragonite-rich sediments to the calcite-rich limestones that dominate the rock record is likely promoted by a decrease in the F:S and the development of a closed system during progressive burial. 
    more » « less
  3. null (Ed.)
    Fluids confined in nanopores are ubiquitous in nature and technology. In recent years, the interest in confined fluids has grown, driven by research on unconventional hydrocarbon resources -- shale gas and shale oil, much of which are confined in nanopores. When fluids are confined in nanopores, many of their properties differ from those of the same fluid in the bulk. These properties include density, freezing point, transport coefficients, thermal expansion coefficient, and elastic properties. The elastic moduli of a fluid confined in the pores contribute to the overall elasticity of the fluid-saturated porous medium and determine the speed at which elastic waves traverse through the medium. Wave propagation in fluid-saturated porous media is pivotal for geophysics, as elastic waves are used for characterization of formations and rock samples. In this paper, we present a comprehensive review of experimental works on wave propagation in fluid-saturated nanoporous media, as well as theoretical works focused on calculation of compressibility of fluids in confinement. We discuss models that bridge the gap between experiments and theory, revealing a number of open questions that are both fundamental and applied in nature. While some results were demonstrated both experimentally and theoretically (e.g. the pressure dependence of compressibility of fluids), others were theoretically predicted, but not verified in experiments (e.g. linear scaling of modulus with the pore size). Therefore, there is a demand for the combined experimental-modeling studies on porous samples with various characteristic pore sizes. The extension of molecular simulation studies from simple model fluids to the more complex molecular fluids is another open area of practical interest. 
    more » « less
  4. Abstract

    Target subsurface reservoirs for emerging low‐carbon energy technologies and geologic carbon sequestration typically have low permeability and thus rely heavily on fluid transport through natural and induced fracture networks. Sustainable development of these systems requires deeper understanding of how geochemically mediated deformation impacts fracture microstructure and permeability evolution, particularly with respect to geochemical reactions between pore fluids and the host rock. In this work, a series of triaxial direct shear experiments was designed to evaluate how fractures generated at subsurface conditions respond to penetration of reactive fluids with a focus on the role of mineral precipitation. Calcite‐rich shale cores were directly sheared under 3.5 MPa confining pressure using BaCl2‐rich solutions as a working fluid. Experiments were conducted within an X‐ray computed tomography (xCT) scanner to capture 4‐D evolution of fracture geometry and precipitate growth. Three shear tests evidenced nonuniform precipitation of barium carbonates (BaCO3) along through‐going fractures, where the extent of precipitation increased with increasing calcite content. Precipitates were strongly localized within fracture networks due to mineral, geochemical, and structural heterogeneities and generally concentrated in smaller apertures where rock:water ratios were highest. The combination of elevated fluid saturation and reactive surface area created in freshly activated fractures drove near‐immediate mineral precipitation that led to an 80% permeability reduction and significant flow obstruction in the most reactive core. While most previous studies have focused on mixing‐induced precipitation, this work demonstrates that fluid–rock interactions can trigger precipitation‐induced permeability alterations that can initiate or mitigate risks associated with subsurface energy systems.

     
    more » « less
  5. Two carbonate units from Southwest Florida, the Caloosahatchee and Fort Thompson Formations, were studied using X-ray instruments to understand more about their origins. The Caloosahatchee Fm. is late Pliocene to early Pleistocene in age while the Fort Thompson Fm. is late Pleistocene in age. Powdered X-ray diffraction (PXRD) was used to obtain the mineral composition of these formations. PXRD revealed the Caloosahatchee Fm. consists predominantly of calcite with lesser quartz and aragonite. PXRD of the carbonate rocks from the Fort Thompson Fm. are also predominantly calcite with lesser quartz and aragonite. Fossils were picked by hand from poorly cemented Caloosahatchee Fm. samples and analyzed on the PXRD. These fossils were predominantly aragonite with minor calcite. Carbonates from the Caloosahatchee and Fort Thompson Fms. were also analyzed for their major and trace element geochemistry using a portable X-Ray fluorescence (pXRF). The Caloosahatchee Fm. has a Mg/Ca ratio which ranges from 0.07 to 0.10, Sr which ranges from 368 to 1650 ppm, and Al which ranges from 0.08 to 0.35 wt.%. No As was detected in the Caloosahatchee Fm. The Fort Thompson Fm. was divided into lower and upper units for pXRF analysis. The lower Fort Thompson Fm. has a Mg/Ca ratio which ranges from 0.08 to 0.10, Sr which ranges from 197 to 1097 ppm, and Al which ranges from 0.05 to 0.38 wt.%. The upper Fort Thompson Fm. has a Mg/Ca ratio which ranges from 0.07 to 0.10, Sr which ranges from 92 to 1015 ppm, and Al which ranges from 0.21 to 1.33 wt.%. The lower Fort Thompson Fm. has no As detected in it, but the upper Fort Thompson had 5 ppm As. The low (< 0.8) Mg/Ca ratio and calcite being the predominant mineral in both formations indicate they are limestone. The presence of quartz, and the Al values suggest both formations have terrestrial contributions and are not pure marine limestone. The higher Al of the upper Fort Thompsons suggest it might have the largest terrestrial contribution. The Sr values for the Caloosahatchee Fm. are higher than the Fort Thompson Fms. This could be due to a higher marine influence in the Caloosahatchee Fm. The PXRD suggests the aragonite is originating from the shells within the formations. The lack of significant As in all rocks suggests leaching of this metal into the environment is not a concern. 
    more » « less