Abstract Carbonate‐brucite chimneys are a characteristic of low‐ to moderate‐temperature, ultramafic‐hosted alkaline hydrothermal systems, such as the Lost City hydrothermal field located on the Atlantis Massif at 30°N near the Mid‐Atlantic Ridge. These chimneys form as a result of mixing between warm, serpentinization‐derived vent fluids and cold seawater. Previous work has documented the evolution in mineralogy and geochemistry associated with the aging of the chimneys as hydrothermal activity wanes. However, little is known about spatial heterogeneities within and among actively venting chimneys. New mineralogical and geochemical data (87Sr/86Sr and stable C, O, and clumped isotopes) indicate that the brucite and calcite precipitate at elevated temperatures in vent fluid‐dominated domains in the interior of chimneys. Exterior zones dominated by seawater are brucite‐poor and aragonite is the main carbonate mineral. Carbonates record mostly out of equilibrium oxygen and clumped isotope signatures due to rapid precipitation upon vent fluid‐seawater mixing. On the other hand, the carbonates precipitate closer to carbon isotope equilibrium, with dissolved inorganic carbon in seawater as the dominant carbon source and have δ13C values within the range of marine carbonates. Our data suggest that calcite is a primary mineral in the active hydrothermal chimneys and does not exclusively form as a replacement of aragonite during later alteration with seawater. Elevated formation temperatures and lower87Sr/86Sr relative to aragonite in the same sample suggest that calcite may be the first carbonate mineral to precipitate.
more »
« less
This content will become publicly available on May 20, 2026
Kiloyear cycles of carbonate and Mg-silicate replacement at Von Damm hydrothermal vent field
Abstract The Von Damm vent field (VDVF) on the Mid-Cayman Rise in the Caribbean Sea is unique among modern hydrothermal systems in that the chimneys and mounds are almost entirely composed of talc. We analyzed samples collected in 2020 and report that in addition to disordered talc of variable crystallinity, carbonates are a major class of mineral at VDVF. The carbonate minerals include aragonite, calcite, magnesium-rich calcite, and dolomite. Talc and carbonate mineral textures indicate that, rather than replacing volcanic host rock, they precipitate from the mixing of hydrothermal fluids and seawater at the seafloor, occurring in chimneys and surrounding rubble. Alternating precipitation of this mineral assemblage is pervasive, with carbonate minerals typically being succeeded by talc, and with indications that in some cases talc and carbonate minerals replace one another. Stable carbon isotopic data indicate the carbonate minerals originate from the mixing of seawater and hydrothermal fluid, which is supported by U-Th data. Radiocarbon calcite ages and talc 234U-230Th isochron ages indicate mineral ages spanning over thousands to tens of thousands of years. Analyses of these samples illustrate a dynamic system that transitions from carbonate-dominated to Mg-silicate–dominated precipitation over time scales of thousands of years. Our observations raise questions regarding the eventual fate of seafloor precipitates and whether carbonate and silicate minerals in such settings are sequestered and represented in the rock record.
more »
« less
- Award ID(s):
- 1801036
- PAR ID:
- 10639730
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Geology
- Volume:
- 53
- Issue:
- 8
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 668 to 672
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Although the serpentinite‐hosted Lost City hydrothermal field (LCHF) was discovered more than 20 years ago, it remains unclear whether and how the presence of microbes affects the mineralogy and textures of the hydrothermal chimney structures. Most chimneys have flow textures comprised of mineral walls bounding paleo‐channels, which are preserved in inactive vent structures to a varying degree. Brucite lines the internal part of these channels, while aragonite dominates the exterior. Calcite is also present locally, mostly associated with brucite. Based on a combination of microscopic and geochemical analyses, we interpret brucite, calcite, and aragonite as primary minerals that precipitate abiotically from mixing seawater and hydrothermal fluids. We also observed local brucite precipitation on microbial filaments and, in some cases, microbial filaments may affect the growth direction of brucite crystals. Brucite is more fluorescent than carbonate minerals, possibly indicating the presence of organic compounds. Our results point to brucite as an important substrate for microbial life in alkaline hydrothermal systems.more » « less
-
Critical mineral deposits commonly form in magmatic-hydrothermal systems including carbonatites and/or alkaline syenites, and more evolved peralkaline granites where the rare earth element (REE) undergo a complex array of partitioning, transport and mineralization. Significant alteration and veining zones develop in these deposits and can be used to vector ore zones in the field [1]. The REE ore minerals typically reflect the characteristics of these systems, which are enriched in carbonate, fluoride, and phosphate or a combination thereof. The REE can also be incorporated into vein minerals such as calcite, fluorite and apatite where the REE3+ exchange for Ca2+ on the crystal lattice [2]. These minerals give us clues about the hydrothermal reaction paths of REE in critical mineral deposits. This study aims to: 1) present our recent findings from hydrothermal fluid-mineral REE partitioning experiments, 2) discuss thermodynamic models to simulate REE in critical mineral deposits, and 3) link the thermodynamic simulations to field observations. Hydrothermal fluid-calcite partitioning experiments were conducted between 100 and 200 °C by hydrothermal fluid mixing and precipitation [2] at near neutral to mildly alkaline pH (6 – 9). The REE concentrations in synthetic calcite crystals and aqueous fluids sampled in situ were used to fit the data to the lattice strain model [3] and using the Dual Thermodynamic approach [4]. A second type of experiment consisted of reacting natural fluorite and apatite crystals with acidic to mildly acidic (pH of 2 – 4) aqueous fluids in batch-type reactors to study the behavior of REE and mineral dissolution-precipitation reactions near crystal surfaces. The GEMS code package [5] was used to implement these new data into a thermodynamic model and simulate possible REE reaction paths in hydrothermal fluids. Two REE mineral deposits in New Mexico (Lemitar and Gallinas Mountains) present ideal case studies to illustrate how these models can be linked to field observations from natural systems. [1] Gysi et al. (2016), Econ. Geol. 111, 1241-1276; [2] Perry and Gysi (2020), Geochim. Cosmochim. Acta 286, 177-197; [3] Blundy and Wood (1994) Nature 372, 452-454; [4] Kulik (2006), Chem. Geol. 225, 189-212; [5] Kulik et al. (2013), Computat. Geosci. 17, 1-24.more » « less
-
Deposition of trona, nahcolite, and other Na-carbonate evaporite minerals in lakes is commonly closely associated with active volcanism, suggesting that the excess alkalinity required for their formation may arise from fluid-rock interactions involving hydrothermal waters that contain magmatic CO2. Paradoxically, the world's largest Na-carbonate occurrence, contained within the Eocene Green River Formation in Wyoming, USA, was not associated with nearby active magmatism. Magmatism was active ∼200 km southeast in the Colorado Mineral Belt, however, suggesting that a river draining this area could have supplied excess alkalinity to Eocene lakes. Sedimentologic studies in southwestern Wyoming, along the course of the hypothesized Aspen paleoriver, document fluvial and deltaic sandstone with generally northwest-directed paleocurrent indicators. Sandstone framework grain compositions and detrital zircon ages are consistent with derivation from the Colorado Mineral Belt and its host rocks. These results provide the first confirmation of a fluvial connection to downstream Eocene lakes, and indicate that lake deposits may offer a unique perspective on upstream magmatic and hydrothermal histories.more » « less
-
Trona, nahcolite, and other Na-carbonate evaporite minerals in lakes are often closely associated with active volcanism, suggesting that the excess alkalinity required for their formation may arise from fluid-rock interactions involving hydrothermal waters that contain magmatic CO2. Paradoxically, the world’s largest Na-carbonate occurrence, contained within the Eocene Green River Formation in Wyoming, was not associated with nearby active magmatism. Magmatism was active ~200 km southeast in the Colorado Mineral Belt however, suggesting that a river draining this area could have supplied excess alkalinity to Eocene lakes. Sedimentologic studies in southwestern Wyoming, along the course of the hypothesized Aspen paleoriver, document fluvial and deltaic sandstone with generally northwest-directed paleocurrent indicators. Sandstone framework grain compositions and detrital zircon ages are consistent with derivation from the Colorado Mineral Belt and its host rocks. These results provide the first confirmation of a fluvial connection to downstream Eocene lakes, and indicate that lake deposits may offer a unique perspective on upstream magmatic and hydrothermal histories.more » « less
An official website of the United States government
