skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of charge on protein ion structure: Lessons from cation‐to‐anion, proton‐transfer reactions
Collision cross-section values, which can be determined using ion mobility experiments, are sensitive to the structures of protein ions and useful for applications to structural biology and biophysics. Protein ions with different charge states can exhibit very different collision cross-section values, but a comprehensive understanding of this relationship remains elusive. Here, we review cation-to-anion, proton-transfer reactions (CAPTR), a method for generating a series of charge-reduced protein cations by reacting quadrupole-selected cations with even-electron monoanions. The resulting CAPTR products are analyzed using a combination of ion mobility, mass spectrometry, and collisional activation. We compare CAPTR to other charge-manipulation strategies and review the results of various CAPTR-based experiments, exploring their contribution to a deeper understanding of the relationship between protein ion structure and charge state.  more » « less
Award ID(s):
2203513
PAR ID:
10410674
Author(s) / Creator(s):
;
Editor(s):
Havlíček, Vladimír
Date Published:
Journal Name:
Mass Spectrometry Reviews
ISSN:
0277-7037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The structural stability of biomolecules in the gas phase remains an important topic in mass spectrometry applications for structural biology. Here, we evaluate the kinetic stability of native-like protein ions using time-dependent, tandem ion mobility (IM). In these tandem IM experiments, ions of interest are mobility-selected after a first dimension of IM and trapped for up to ∼14 s. Time-dependent, collision cross section distributions are then determined from separations in a second dimension of IM. In these experiments, monomeric protein ions exhibited structural changes specific to both protein and charge state, whereas large protein complexes did not undergo resolvable structural changes on the timescales of these experiments. We also performed energy-dependent experiments, i.e., collision-induced unfolding, as a comparison for time-dependent experiments to understand the extent of unfolding. Collision cross section values observed in energy-dependent experiments using high collision energies were significantly larger than those observed in time-dependent experiments, indicating that the structures observed in time-dependent experiments remain kinetically trapped and retain some memory of their solution-phase structure. Although structural evolution should be considered for highly charged, monomeric protein ions, these experiments demonstrate that higher-mass protein ions can have remarkable kinetic stability in the gas phase. 
    more » « less
  2. High resolution mobility-based ion separations in Structures for Lossless Ion Manipulations (SLIM) have been useful for ion mobility separations for a variety of molecular classes in the gas phase. Here, we present multi-pass SLIM separations for gas-phase proteins in their near-native state exhibiting charge state dependent arrival time distributions using carbonic anhydrase (29 kDa), alcohol dehydrogenase (148 kDa), and apo-transferrin (79 kDa). For the selected charge states of each protein species, we investigate the conformational space using molecular dynamic simulations and calculated the collision cross section (CCS) values using IMoS. The measured CCS values obtained from the SLIM arrival time distributions (ATDs) agreed within ~6% difference when compared to the calculated CCS values. The experimental CCS values were obtained from calibration curves for the arrival times of Agilent Tune Mix ions. For multi-pass separations, the ATDs were converted to CCS values by deconvoluting the multi-pass arrival times into accurate single-pass values amenable to the single-pass calibration curves. Mass spectra of carbonic anhydrase (CA) showed three different charge states (z = 9+ to 11+). Their corresponding mobility peaks were baseline-separated using 8-m single-pass separations. Single-pass analysis of alcohol dehydrogenase (ADH) exhibit three predominant charge states (z = 23+ to 25+) with mobility overlap between adjacent charge states. The mobility peak resolution for ADH improved with multi-pass separations (up to 24-m path length). In addition, CCS distributions obtained for charge states z = 16+ to 18+ of apo-transferrin reveal a transition from a compact unimodal form (z = 18+ and 19+) to broader multi-modal CCS distributions for z = 16+. For apo-transferrin, 40-m multi-pass separations were performed allowing for complete isolation of the selected mobility range corresponding to z = 17+ leading to selective isolation of a narrow arrival time window. The extended mobility separations provided minimal alterations to the structure of the proteins, and the experimentally derived CCS values showed minimal change as a function of separation time or number of passes. Mobility-based ion separations for native-like proteins, using SLIM, open opportunities for native-IMS applications as well as other manipulations enabled by SLIM like mobility selective isolation and collection. 
    more » « less
  3. Abstract Charge-exchange recombination with neutral atoms significantly influences the ionization balance in electron beam ion traps (EBIT) because its cross section is relatively large compared to cross sections of electron collision induced processes. Modeling the highly charged ion cloud requires the estimate of operating parameters, such as electron beam energy and density, the density of neutral atoms, and the relative velocities of collision partners. Uncertainty in the charge-exchange cross section can dominate the overall uncertainty in EBIT experiments, especially when it compounds with the uncertainties of experimental parameters that are difficult to determine. We present measured and simulated spectra of few-electron Fe ions, where we used a single charge-exchange factor to reduce the number of free parameters in the model. The deduction of the charge-exchange factor from the ratio of Li-like and He-like features allows for predicting the intensity of H-like lines in the spectra. 
    more » « less
  4. Antibody-based therapeutics continue to expand both in the number of products and in their use in patients. These heterogeneous proteins challenge traditional drug characterization strategies, but ion mobility (IM) and mass spectrometry (MS) approaches have eased the challenge of higher-order structural characterization. Energy-dependent IM-MS, e.g., collision-induced unfolding (CIU), has been demonstrated to be sensitive to subtle differences in structure. In this study, we combine a charge-reduction method, cation-to-anion proton-transfer reactions (CAPTR), with energy-dependent IM-MS and varied solution conditions to probe their combined effects on the gas-phase structures of IgG1κ and IgG4κ from human myeloma. CAPTR paired with MS-only analysis improves the confidence of charge-state assignments and the resolution of the interfering protein species. Collision cross-section distributions were determined for each of the charge-reduced products. Similarity scoring was used to quantitatively compare distributions determined from matched experiments analyzing samples of the two antibodies. Relative to workflows using energy-dependent IM-MS without charge-state manipulation, combining CAPTR and energy-dependent IM-MS enhanced the differentiation of these antibodies. Combined, these results indicate that CAPTR can benefit many aspects of antibody characterization and differentiation. 
    more » « less
  5. Ion mobility spectrometry (IMS) can delineate gas-phase ions and probe their geometries. Coupling with electrospray ionization and MS has brought IMS to structural biology, revealing the macromolecular folding and subunit connectivity. However, the orientational averaging of ion–molecule collision cross sections (Ω) in the linear and field asymmetric waveform IMS (FAIMS) diminishes the resolution and structural specificity. In the novel low-field differential (LOD) IMS, a field too weak for ion heating (and thus FAIMS) aligns strong macrodipoles, capturing their magnitudes and directional Ω across the dipole (Ω⊥). However, the bisinusoidal waveforms (from FAIMS) have compromised the resolution, measurement accuracy, and correlation to the ion properties. Large ions amenable to LODIMS have low mobility and diffuse slowly, allowing the waveform frequencies down to ∼10 kHz. The low field and frequency permit generating the ideal rectangular waveforms with a flexible frequency and duty cycle by direct switching (impractical for FAIMS) in a miniature low-power format. This new IMS stage is evaluated for the exemplary large protein albumin (66 kDa) previously studied using the bisinusoidal waveform. The flat voltages and greater form factor initiate the differential IMS effect at lower fields, expand the separation space, and enable the quantification of Ω⊥ values by varying the duty cycle. 
    more » « less