Abstract Investigating how intrasexual competition and intersexual mate choice act within a system is crucial to understanding the maintenance and diversity of sexually-dimorphic traits. These two processes can act in concert by selecting for the same trait, or in opposition by selecting for different extremes of the same trait; they can also act on different traits, potentially increasing trait complexity. We asked whether male–male competition and female mate choice act on the same male traits using Trinidadian guppies, which exhibit sexual size dimorphism and male-limited color patterns consisting of different colors arranged along the body and fins. We used behavioral assays to assess the relationship between color and competitive success and then compared our results to the plethora of data on female choice and color in our study population. Males initiated more contests if they were larger than their competitor. Males won contests more often if they had more black coloration than their competitor, and the effect of black was stronger when males had less orange than their competitor. Additionally, males won more often if they had either more structural color (iridescence) and more orange, or less structural color and less orange than their competitor, suggesting multiple combinations of color traits predict success. Females from our study population exhibit a strong preference for more orange coloration. Thus, traits favored in male contests differ from those favored by intersexual selection in this population. These results suggest that inter- and intrasexual selection, when acting concurrently, can promote increased complexity of sexually selected traits.
more »
« less
Ecology, sexual dimorphism, and jumping evolution in anurans
Abstract Sexual dimorphism (SD) is a common feature of animals, and selection for sexually dimorphic traits may affect both functional morphological traits and organismal performance. Trait evolution through natural selection can also vary across environments. However, whether the evolution of organismal performance is distinct between the sexes is rarely tested in a phylogenetic comparative context. Anurans commonly exhibit sexual size dimorphism, which may affect jumping performance given the effects of body size on locomotion. They also live in a wide variety of microhabitats. Yet the relationships among dimorphism, performance, and ecology remain underexamined in anurans. Here, we explore relationships between microhabitat use, body size, and jumping performance in males and females to determine the drivers of dimorphic patterns in jumping performance. Using methods for predicting jumping performance through anatomical measurements, we describe how fecundity selection and natural selection associated with body size and microhabitat have likely shaped female jumping performance. We found that the magnitude of sexual size dimorphism (where females are about 14% larger than males) was much lower than dimorphism in muscle volume, where females had 42% more muscle than males (after accounting for body size). Despite these sometimes‐large averages, phylogenetict‐tests failed to show the statistical significance of SD for any variable, indicating sexually dimorphic species tend to be closely related. While SD of jumping performance did not vary among microhabitats, we found female jumping velocity and energy differed across microhabitats. Overall, our findings indicate that differences in sex‐specific reproductive roles, size, jumping‐related morphology, and performance are all important determinants in how selection has led to the incredible ecophenotypic diversity of anurans.
more »
« less
- PAR ID:
- 10410753
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Evolutionary Biology
- Volume:
- 36
- Issue:
- 5
- ISSN:
- 1010-061X
- Format(s):
- Medium: X Size: p. 829-841
- Size(s):
- p. 829-841
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Selection that acts in a sex-specific manner causes the evolution of sexual dimorphism. Sex-specific phenotypic selection has been demonstrated in many taxa and can be in the same direction in the two sexes (differing only in magnitude), limited to one sex, or in opposing directions (antagonistic). Attempts to detect the signal of sex-specific selection from genomic data have confronted numerous difficulties. These challenges highlight the utility of “direct approaches,” in which fitness is predicted from individual genotype within each sex. Here, we directly measured selection on Single Nucleotide Polymorphisms (SNPs) in a natural population of the sexually dimorphic, dioecious plant, Silene latifolia. We measured flowering phenotypes, estimated fitness over one reproductive season, as well as survival to the next year, and genotyped all adults and a subset of their offspring for SNPs across the genome. We found that while phenotypic selection was congruent (fitness covaried similarly with flowering traits in both sexes), SNPs showed clear evidence for sex-specific selection. SNP-level selection was particularly strong in males and may involve an important gametic component (e.g., pollen competition). While the most significant SNPs under selection in males differed from those under selection in females, paternity selection showed a highly polygenic tradeoff with female survival. Alleles that increased male mating success tended to reduce female survival, indicating sexual antagonism at the genomic level. Perhaps most importantly, this experiment demonstrates that selection within natural populations can be strong enough to measure sex-specific fitness effects of individual loci. Males and females typically differ phenotypically, a phenomenon known as sexual dimorphism. These differences arise when selection on males differs from selection on females, either in magnitude or direction. Estimated relationships between traits and fitness indicate that sex-specific selection is widespread, occurring in both plants and animals, and explains why so many species exhibit sexual dimorphism. Finding the specific loci experiencing sex-specific selection is a challenging prospect but one worth undertaking given the extensive evolutionary consequences. Flowering plants with separate sexes are ideal organisms for such studies, given that the fitness of females can be estimated by counting the number of seeds they produce. Determination of fitness for males has been made easier as thousands of genetic markers can now be used to assign paternity to seeds. We undertook just such a study in S. latifolia, a short-lived, herbaceous plant. We identified loci under sex-specific selection in this species and found more loci affecting fitness in males than females. Importantly, loci with major effects on male fitness were distinct from the loci with major effects on females. We detected sexual antagonism only when considering the aggregate effect of many loci. Hence, even though males and females share the same genome, this does not necessarily impose a constraint on their independent evolution.more » « less
-
Mate choice and male–male combat over successful mating often cause disproportionate exaggeration of male trait relative to body size. However, the exaggeration is often not the only trait involved with male–male combat and mate choice: suites of co-expressed traits may function together as a coordinated unit. When this occurs, dimorphism may be expected for these additional, non-exaggerated, structures. S. femorata males have disproportionately large hind-legs used in male–male combat over females. During the fights, fore- and mid-legs are used to keep males in positions where advantageous for leverage. Because use of the exaggerated hind-legs is coordinated with the other legs, they will coevolve as a functional unit. Here, we show that 1) S. femorata has sexual size differences in all three legs; 2) males show positive allometry in the relative sizes of all three legs; and 3) microstructures of tarsi on the fore- and mid-legs are also sexually dimorphic. Despite these differences in the tarsal microstructure, 4) adhesion forces of the tarsi had no sexual difference in flat surface. The microstructure would be specialized on attaching elytra surface. These results suggest that the three pairs of legs function together during fighting behavior, with hind-legs employed primarily for fighting, and the fore- and mid-legs functioning to grip females, keeping males positioned on the back of the female during combat.more » « less
-
Abstract Elaborate, sexually dimorphic traits are widely thought to evolve under sexual selection through female preference, male–male competition, or both. The orangethroat darter (Etheostoma spectabile) is a sexually dichromatic fish in which females exhibit no preferences for male size or coloration. We tested whether these traits affect individual reproductive success inE. spectabilewhen multiple males are allowed to freely compete for a female. The quality and quantity of male coloration were associated with greater success in maintaining access to the female and in spawning as the primary male (first male to participate). On the other hand, sneaking behavior showed little correlation with coloration. Male breeding coloration inE. spectabilemay therefore demonstrate how intrasexual competition can be a predominant factor underlying the evolution of male ornaments.more » « less
-
Abstract Sexually dimorphic behaviour is pervasive across animals, with males and females exhibiting different mate selection, parental care, foraging, dispersal, and territorial strategies. However, the genetic underpinnings of sexually dimorphic behaviours are poorly understood. Here we investigate gene networks and expression patterns associated with sexually dimorphic imprinting‐like learning in the butterflyBicyclus anynana. In this species, both males and females learn visual preferences, but learn preferences for different traits and use different signals as salient, unconditioned cues. To identify genes and gene networks associated with this behaviour, we examined gene expression profiles of the brains and eyes of male and female butterflies immediately post training and compared them to the same tissues of naïve individuals. We found more differentially expressed genes and a greater number of associated gene networks in the eyes, indicating a role of the peripheral nervous system in visual imprinting‐like learning. Females had higher chemoreceptor expression levels than males, supporting the hypothesized sexual dimorphic use of chemical cues during the learning process. In addition, genes that influenceB. anynanawing patterns (sexual ornaments), such asinvected,spalt, andapterous, were also differentially expressed in the brain and eye, suggesting that these genes may influence both sexual ornaments and the preferences for these ornaments. Our results indicate dynamic and sex‐specific responses to social scenario in both the peripheral and central nervous systems and highlight the potential role of wing patterning genes in mate preference and learning across the Lepidoptera.more » « less
An official website of the United States government
