Abstract We conducted an all‐sky imaging transient search with the Owens Valley Radio Observatory Long Wavelength Array (OVRO‐LWA) data collected during the Perseid meteor shower in 2018. The data collection during the meteor shower was motivated to conduct a search for intrinsic radio emission from meteors below 60 MHz known as the meteor radio afterglows (MRAs). The data collected were calibrated and imaged using the core array to obtain lower angular resolution images of the sky. These images were input to a pre‐existing LWA transient search pipeline to search for MRAs as well as cosmic radio transients. This search detected 5 MRAs and did not find any cosmic transients. We further conducted peeling of bright sources, near‐field correction, visibility differencing and higher angular resolution imaging using the full array for these 5 MRAs. These higher angular resolution images were used to study their plasma emission structures and monitor their evolution as a function of frequency and time. With higher angular resolution imaging, we resolved the radio emission size scales to less than 1 km physical size at 100 km heights. The spectral index mapping of one of the long duration event showed signs of diffusion of plasma within the meteor trails. The unpolarized emission from the resolved radio components suggest resonant transition radiation as the possible radiation mechanism of MRAs.
more »
« less
Time-Domain Science Pipelines for the OVRO-LWA
The Owens Valley Radio Observatory Long Wavelength Array is a low radio frequency all-sky imaging radio interferometer. The full 352-element array will generate more than 2 TB of visibility data per hour of observation. One of the array’s primary science cases, the search for variable radio emission from exoplanets and for transients, require fast and high dynamic range interferometric imaging. Here we detail the design and implementation of a two-pipeline infrastructure that minimizes development cost: an offline pipeline that facilitates experimentation with existing pack-ages, and a real-time pipeline that minimizes overhead.
more »
« less
- Award ID(s):
- 1828784
- PAR ID:
- 10410958
- Date Published:
- Journal Name:
- 2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The dynamics and the structure of the solar corona are determined by its magnetic field. Measuring coronal magnetic fields is, however, extremely hard. The polarization of low-frequency radio emissions has long been recognized as one of the few effective observational probes of magnetic fields in the mid and high corona. However, the extreme intrinsic variability of this emission, the limited ability of most of the available existing instrumentation (until recently) to capture it, and the technical challenges involved have all contributed to its use being severely limited. The high dynamic-range spectropolarimetric snapshot imaging capability that is needed for radio coronal magnetography is now within reach. This has been enabled by the confluence of data from the Murchison Widefield Array (MWA), a Square Kilometre Array (SKA) precursor, and our unsupervised and robust polarization calibration and imaging software pipeline dedicated to the Sun—Polarimetry using the Automated Imaging Routine for Compact Arrays of the Radio Sun (P-AIRCARS). Here, we present the architecture and implementation details of P-AIRCARS. Although the present implementation of P-AIRCARS is tuned to the MWA, the algorithm itself can easily be adapted for future arrays, such as SKA1-Low. We hope and expect that P-AIRCARS will enable exciting new science with instruments like the MWA, and that it will encourage the wider use of radio imaging in the larger solar physics community.more » « less
-
Wideband beamforming and interference cancellation for phased array antennas requires advances in signal processing algorithms, software, and specialized hardware platforms. A high-throughput array receiver has been developed that enables communication in radio frequency interference-rich environments with field programmable gate array (FPGA)-based frequency channelization and packetization. In this study, a real-time interference mitigation algorithm was implemented on graphics processing units (GPUs) contained in the data pipeline. The key contribution is a hardware and software pipeline for subchannelized wideband array signal processing with 150 MHz instantaneous bandwidth and interference cancellation with a heterogeneous, distributed, and scaleable digital signal processing (DSP) architecture that achieves 30 dB interferer cancellation null depth in real time with a moving interference source.more » « less
-
ABSTRACT The recent demonstration of a real-time direct imaging radio interferometry correlator represents a new capability in radio astronomy. However, wide-field imaging with this method is challenging since wide-field effects and array non-coplanarity degrade image quality if not compensated for. Here, we present an alternative direct imaging correlation strategy using a direct Fourier transform (DFT), modelled as a linear operator facilitating a matrix multiplication between the DFT matrix and a vector of the electric fields from each antenna. This offers perfect correction for wide field and non-coplanarity effects. When implemented with data from the Long Wavelength Array (LWA), it offers comparable computational performance to previously demonstrated direct imaging techniques, despite having a theoretically higher floating point cost. It also has additional benefits, such as imaging sparse arrays and control over which sky coordinates are imaged, allowing variable pixel placement across an image. It is in practice a highly flexible and efficient method of direct radio imaging when implemented on suitable arrays. A functioning electric field direct imaging architecture using the DFT is presented, alongside an exploration of techniques for wide-field imaging similar to those in visibility-based imaging, and an explanation of why they do not fit well to imaging directly with the digitized electric field data. The DFT imaging method is demonstrated on real data from the LWA telescope, alongside a detailed performance analysis, as well as an exploration of its applicability to other arrays.more » « less
-
null (Ed.)ABSTRACT We present results from a circular polarization survey for radio stars in the Rapid ASKAP Continuum Survey (RACS). RACS is a survey of the entire sky south of δ = +41○ being conducted with the Australian Square Kilometre Array Pathfinder telescope (ASKAP) over a 288 MHz wide band centred on 887.5 MHz. The data we analyse include Stokes I and V polarization products to an RMS sensitivity of 250 μJy PSF−1. We searched RACS for sources with fractional circular polarization above 6 per cent, and after excluding imaging artefacts, polarization leakage, and known pulsars we identified radio emission coincident with 33 known stars. These range from M-dwarfs through to magnetic, chemically peculiar A- and B-type stars. Some of these are well-known radio stars such as YZ CMi and CU Vir, but 23 have no previous radio detections. We report the flux density and derived brightness temperature of these detections and discuss the nature of the radio emission. We also discuss the implications of our results for the population statistics of radio stars in the context of future ASKAP and Square Kilometre Array surveys.more » « less