skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Diagonally implicit Runge-Kutta schemes: Discrete energy-balance laws and compactness properties
Abstract We study diagonally implicit Runge-Kutta (DIRK) schemes when applied to abstract evolution problems that fit into the Gelfand-triple framework. We introduce novel stability notions that are well-suited to this setting and provide simple, necessary and sufficient, conditions to verify that a DIRK scheme is stable in our sense and in Bochner-type norms. We use several popular DIRK schemes in order to illustrate cases that satisfy the required structural stability properties and cases that do not. In addition, under some mild structural conditions on the problem we can guarantee compactness of families of discrete solutions with respect to time discretization.  more » « less
Award ID(s):
2111228
PAR ID:
10410975
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Numerical Mathematics
Volume:
0
Issue:
0
ISSN:
1570-2820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Implicit-explicit (IMEX) time integration schemes are well suited for non-linear structural dynamics because of their low computational cost and high accuracy. However, the stability of IMEX schemes cannot be guaranteed for general non-linear problems. In this article, we present a scalar auxiliary variable (SAV) stabilization of high-order IMEX time integration schemes that leads to unconditional stability. The proposed IMEX-BDFk-SAV schemes treat linear terms implicitly using kth-order backward difference formulas (BDFk) and non-linear terms explicitly. This eliminates the need for iterations in non-linear problems and leads to low computational costs. Truncation error analysis of the proposed IMEX-BDFk-SAV schemes confirms that up to kth-order accuracy can be achieved and this is verified through a series of convergence tests. Unlike existing SAV schemes for first-order ordinary differential equations (ODEs), we introduce a novel SAV for the proposed schemes that allows direct solution of the second-order ODEs without transforming them into a system of first-order ODEs. Finally, we demonstrate the performance of the proposed schemes by solving several non-linear problems in structural dynamics and show that the proposed schemes can achieve high accuracy at a low computational cost while maintaining unconditional stability. 
    more » « less
  2. In this paper, we discuss the stability and error estimates of the fully discrete schemes for linear conservation laws, which consists of an arbitrary Lagrangian–Eulerian discontinuous Galerkin method in space and explicit total variation diminishing Runge–Kutta (TVD-RK) methods up to third order accuracy in time. The scaling arguments and the standard energy analysis are the key techniques used in our work. We present a rigorous proof to obtain stability for the three fully discrete schemes under suitable CFL conditions. With the help of the reference cell, the error equations are easy to establish and we derive the quasi-optimal error estimates in space and optimal convergence rates in time. For the Euler-forward scheme with piecewise constant elements, the second order TVD-RK method with piecewise linear elements and the third order TVD-RK scheme with polynomials of any order, the usual CFL condition is required, while for other cases, stronger time step restrictions are needed for the results to hold true. More precisely, the Euler-forward scheme needs τ ≤ ρh 2 and the second order TVD-RK scheme needs $$ \tau \le \rho {h}^{\frac{4}{3}}$$ for higher order polynomials in space, where τ and h are the time and maximum space step, respectively, and ρ is a positive constant independent of τ and h . 
    more » « less
  3. null (Ed.)
    In this paper, we develop and analyze finite difference methods for the 3D Maxwell’s equations in the time domain in three different types of linear dispersive media described as Debye, Lorentz and cold plasma. These methods are constructed by extending the Yee-Finite Difference Time Domain (FDTD) method to linear dispersive materials. We analyze the stability criterion for the FDTD schemes by using the energy method. Based on energy identities for the continuous models, we derive discrete energy estimates for the FDTD schemes for the three dispersive models. We also prove the convergence of the FDTD schemes with perfect electric conducting boundary conditions, which describes the second order accuracy of the methods in both time and space. The discrete divergence-free conditions of the FDTD schemes are studied. Lastly, numerical examples are given to demonstrate and confirm our results. 
    more » « less
  4. Abstract Unconditionally stable time stepping schemes are useful and often practically necessary for advancing parabolic operators in multi-scale systems. However, serious accuracy problems may emerge when taking time steps that far exceed the explicit stability limits. In our previous work, we compared the accuracy and performance of advancing parabolic operators in a thermodynamic MHD model using an implicit method and an explicit super time-stepping (STS) method. We found that while the STS method outperformed the implicit one with overall good results, it was not able to damp oscillatory behavior in the solution efficiently, hindering its practical use. In this follow-up work, we evaluate an easy-to-implement method for selecting a practical time step limit (PTL) for unconditionally stable schemes. This time step is used to ‘cycle’ the operator-split thermal conduction and viscosity parabolic operators. We test the new time step with both an implicit and STS scheme for accuracy, performance, and scaling. We find that, for our test cases here, the PTL dramatically improves the STS solution, matching or improving the solution of the original implicit scheme, while retaining most of its performance and scaling advantages. The PTL shows promise to allow more accurate use of unconditionally stable schemes for parabolic operators and reliable use of STS methods. 
    more » « less
  5. Abstract In this paper, we introduce a new framework for deriving partitioned implicit-exponential integrators for stiff systems of ordinary differential equations and construct several time integrators of this type. The new approach is suited for solving systems of equations where the forcing term is comprised of several additive nonlinear terms. We analyze the stability, convergence, and efficiency of the new integrators and compare their performance with existing schemes for such systems using several numerical examples. We also propose a novel approach to visualizing the linear stability of the partitioned schemes, which provides a more intuitive way to understand and compare the stability properties of various schemes. Our new integrators are A-stable, second-order methods that require only one call to the linear system solver and one exponential-like matrix function evaluation per time step. 
    more » « less