skip to main content


Title: Stability analysis and error estimates of arbitrary Lagrangian–Eulerian discontinuous Galerkin method coupled with Runge–Kutta time-marching for linear conservation laws
In this paper, we discuss the stability and error estimates of the fully discrete schemes for linear conservation laws, which consists of an arbitrary Lagrangian–Eulerian discontinuous Galerkin method in space and explicit total variation diminishing Runge–Kutta (TVD-RK) methods up to third order accuracy in time. The scaling arguments and the standard energy analysis are the key techniques used in our work. We present a rigorous proof to obtain stability for the three fully discrete schemes under suitable CFL conditions. With the help of the reference cell, the error equations are easy to establish and we derive the quasi-optimal error estimates in space and optimal convergence rates in time. For the Euler-forward scheme with piecewise constant elements, the second order TVD-RK method with piecewise linear elements and the third order TVD-RK scheme with polynomials of any order, the usual CFL condition is required, while for other cases, stronger time step restrictions are needed for the results to hold true. More precisely, the Euler-forward scheme needs τ ≤ ρh 2 and the second order TVD-RK scheme needs $ \tau \le \rho {h}^{\frac{4}{3}}$ for higher order polynomials in space, where τ and h are the time and maximum space step, respectively, and ρ is a positive constant independent of τ and h .  more » « less
Award ID(s):
1719410
NSF-PAR ID:
10093280
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
53
Issue:
1
ISSN:
0764-583X
Page Range / eLocation ID:
105 to 144
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the formulation and optimization of a Runge–Kutta-type time-stepping scheme for solving the shallow-water equations, aimed at substantially increasing the effective allowable time step over that of comparable methods. This scheme, called FB-RK(3,2), uses weighted forward–backward averaging of thickness data to advance the momentum equation. The weights for this averaging are chosen with an optimization process that employs a von Neumann–type analysis, ensuring that the weights maximize the admittable Courant number. Through a simplified local truncation error analysis and numerical experiments, we show that the method is at least second-order in time for any choice of weights and exhibits low dispersion and dissipation errors for well-resolved waves. Further, we show that an optimized FB-RK(3,2) can take time steps up to 2.8 times as large as a popular three-stage, third-order strong stability-preserving Runge–Kutta method in a quasi-linear test case. In fully nonlinear shallow-water test cases relevant to oceanic and atmospheric flows, FB-RK(3,2) outperforms SSPRK3 in admittable time step by factors roughly between 1.6 and 2.2, making the scheme approximately twice as computationally efficient with little to no effect on solution quality.

    Significance Statement

    The purpose of this work is to develop and optimize time-stepping schemes for models relevant to oceanic and atmospheric flows. Specifically, for the shallow-water equations we optimize for schemes that can take time steps as large as possible while retaining solution quality. We find that our optimized schemes can take time steps between 1.6 and 2.2 times larger than schemes that cost the same number of floating point operations, translating directly to a corresponding speedup. Our ultimate goal is to use these schemes in climate-scale simulations.

     
    more » « less
  2. In this paper, we consider the linear convection-diffusion equation in one dimension with periodic boundary conditions, and analyze the stability of fully discrete methods that are defined with local discontinuous Galerkin (LDG) methods in space and several implicit-explicit (IMEX) Runge-Kutta methods in time. By using the forward temporal differences and backward temporal differences, respectively, we establish two general frameworks of the energy-method based stability analysis. From here, the fully discrete schemes being considered are shown to have monotonicity stability, i.e. theL2L^2norm of the numerical solution does not increase in time, under the time step conditionτ<#comment/>≤<#comment/>F(h/c,d/c2)\tau \le \mathcal {F}(h/c, d/c^2), with the convection coefficientcc, the diffusion coefficientdd, and the mesh sizehh. The functionF\mathcal {F}depends on the specific IMEX temporal method, the polynomial degreekkof the discrete space, and the mesh regularity parameter. Moreover, the time step condition becomesτ<#comment/>≲<#comment/>h/c\tau \lesssim h/cin the convection-dominated regime and it becomesτ<#comment/>≲<#comment/>d/c2\tau \lesssim d/c^2in the diffusion-dominated regime. The result is improved for a first order IMEX-LDG method. To complement the theoretical analysis, numerical experiments are further carried out, leading to slightly stricter time step conditions that can be used by practitioners. Uniform stability with respect to the strength of the convection and diffusion effects can especially be relevant to guide the choice of time step sizes in practice, e.g. when the convection-diffusion equations are convection-dominated in some sub-regions.

     
    more » « less
  3. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results. 
    more » « less
  4. In this paper, we consider electromagnetic (EM) wave propagation in nonlinear optical media in one spatial dimension. We model the EM wave propagation by the time- dependent Maxwell’s equations coupled with a system of nonlinear ordinary differential equations (ODEs) for the response of the medium to the EM waves. The nonlinearity in the ODEs describes the instantaneous electronic Kerr response and the residual Raman molecular vibrational response. The ODEs also include the single resonance linear Lorentz dispersion. For such model, we will design and analyze fully discrete finite difference time domain (FDTD) methods that have arbitrary (even) order in space and second order in time. It is challenging to achieve provable stability for fully discrete methods, and this depends on the choices of temporal discretizations of the nonlinear terms. In Bokil et al. (J Comput Phys 350:420–452, 2017), we proposed novel modifications of second-order leap-frog and trapezoidal temporal schemes in the context of discontinuous Galerkin methods to discretize the nonlinear terms in this Maxwell model. Here, we continue this work by developing similar time discretizations within the framework of FDTD methods. More specifically, we design fully discrete modified leap-frog FDTD methods which are proved to be stable under appropriate CFL conditions. These method can be viewed as an extension of the Yee-FDTD scheme to this nonlinear Maxwell model. We also design fully discrete trapezoidal FDTD methods which are proved to be unconditionally stable. The performance of the fully discrete FDTD methods are demonstrated through numerical experiments involving kink, antikink waves and third harmonic generation in soliton propagation. 
    more » « less
  5. null (Ed.)
    In this paper, we study the central discontinuous Galerkin (DG) method on overlapping meshes for second order wave equations. We consider the first order hyperbolic system, which is equivalent to the second order scalar equation, and construct the corresponding central DG scheme. We then provide the stability analysis and the optimal error estimates for the proposed central DG scheme for one- and multi-dimensional cases with piecewise P k elements. The optimal error estimates are valid for uniform Cartesian meshes and polynomials of arbitrary degree k  ≥ 0. In particular, we adopt the techniques in Liu et al . ( SIAM J. Numer. Anal. 56 (2018) 520–541; ESAIM: M2AN 54 (2020) 705–726) and obtain the local projection that is crucial in deriving the optimal order of convergence. The construction of the projection here is more challenging since the unknowns are highly coupled in the proposed scheme. Dispersion analysis is performed on the proposed scheme for one dimensional problems, indicating that the numerical solution with P 1 elements reaches its minimum with a suitable parameter in the dissipation term. Several numerical examples including accuracy tests and long time simulation are presented to validate the theoretical results. 
    more » « less