skip to main content


Title: Ultra-low-velocity anomaly inside the Pacific Slab near the 410-km discontinuity
Abstract

The upper boundary of the mantle transition zone, known as the “410-km discontinuity”, is attributed to the phase transformation of the mineral olivine (α) to wadsleyite (β olivine). Here we present observations of triplicated P-waves from dense seismic arrays that constrain the structure of the subducting Pacific slab near the 410-km discontinuity beneath the northern Sea of Japan. Our analysis of P-wave travel times and waveforms at periods as short as 2 s indicates the presence of an ultra-low-velocity layer within the cold slab, with a P-wave velocity that is at least ≈20% lower than in the ambient mantle and an apparent thickness of ≈20 km along the wave path. This ultra-low-velocity layer could contain unstable material (e.g., poirierite) with reduced grain size where diffusionless transformations are favored.

 
more » « less
Award ID(s):
2223935 1802247
NSF-PAR ID:
10411025
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Approximately two-thirds of Earth’s outermost shell is composed of oceanic plates that form at spreading ridges and recycle back to Earth’s interior in subduction zones. A series of physical and chemical changes occur in the subducting lithospheric slab as the temperature and pressure increase with depth. In particular, olivine, the most abundant mineral in the upper mantle, progressively transforms to its high-pressure polymorphs near the mantle transition zone, which is bounded by the 410 km and 660 km discontinuities. However, whether olivine still exists in the core of slabs once they penetrate the 660 km discontinuity remains debated. Based on SKS and SKKS shear-wave differential splitting times, we report new evidence that reveals the presence of metastable olivine in the uppermost lower mantle within the ancient Farallon plate beneath the eastern United States. We estimate that the low-density olivine layer in the subducted Farallon slab may compensate the high density of the rest of the slab associated with the low temperature, leading to neutral buoyancy and preventing further sinking of the slab into the deeper part of the lower mantle. 
    more » « less
  2. Abstract

    We present a new 3‐D seismic structural model of the eastern Indonesian region and its surroundings from full‐waveform inversion (FWI) that exploits seismic data filtered at periods between 15–150 s.SASSY21—a recent 3‐D FWI tomographic model of Southeast Asia—is used as a starting model, and our study region is characterized by particularly good data coverage, which facilitates a more refined image. We use the spectral‐element solverSalvusto determine the full 3‐D wavefield, accounting for the fluid ocean explicitly by solving a coupled system of acoustic and elastic wave equations. This is computationally more expensive but allows seismic waves within the water layer to be simulated, which becomes important for periods ≤20 s. We investigate path‐dependent effects of surface elevation (topography and bathymetry) and the fluid ocean on synthetic waveforms, and compare our final model to the tomographic result obtained with the frequently used ocean loading approximation. Furthermore, we highlight some of the key features of our final model—SASSIER22—after 34 L‐BFGS iterations, which reveals detailed anomalies down to the mantle transition zone, including a convergent double‐subduction zone along the southern segment of the Philippine Trench, which was not evident in the starting model. A more detailed illumination of the slab beneath the North Sulawesi Trench reveals a pronounced positive wavespeed anomaly down to 200 km depth, consistent with the maximum depth of seismicity, and a more diffuse but aseismic positive wavespeed anomaly that continues to the 410 km discontinuity.

     
    more » « less
  3. Abstract

    Using recently collected high‐resolution seismic data along a dense linear transect across Ohio, West Virginia, and Virginia (called Mid‐Atlantic Geophysical Integrative Collaboration (MAGIC) profile), we analyze P‐to‐S receiver functions to investigate the undulations of the mantle transition zone (MTZ) discontinuities (410‐ and 660‐km) beneath the central Appalachian region. Our results incorporating the effects of local crustal and mantle structures suggest shallowing of both the 410‐ and the 660‐km discontinuities from the northwest (inland) to the southeast (coast) along MAGIC profile. Hydro‐thermal upwelling beneath the eastern U.S. coastal plain due to a hydrated MTZ and hot upwelling return flow associated with the descending lower mantle Farallon slab is consistent with our observations of MTZ structure considering 3D velocity heterogeneity. The inferred hydrous hot upwelling rising into the upper mantle may trigger dehydration melting atop the 410‐km discontinuity, which may help to explain the presence of a low velocity upper mantle anomaly beneath the region today.

     
    more » « less
  4. SUMMARY The detailed structure near the 410-km discontinuity provides key constraints of the dynamic interactions between the upper mantle and the lower mantle through the mantle transition zone (MTZ) via mass and heat exchange. Meanwhile, the temperature of the subducting slab, which can be derived from its fast wave speed perturbation, is critical for understanding the mantle dynamics in subduction zones where the slab enters the MTZ. Multipathing, i.e. triplicated, body waves that bottom near the MTZ carry rich information of the 410-km discontinuity structure and can be used to constrain the discontinuity depth and radial variations of wave speeds across it. In this study, we systematically analysed the trade-off between model parameters in triplication studies using synthetic examples. Specifically, we illustrated the necessity of using array-normalized amplitude. Two 1-D depth profiles of the wave speed below the Tatar Strait of Russia in the Kuril subduction zone are obtained. We have observed triplications due to both the 410-km discontinuity and the slab upper surface. And, seismic structures for these two interfaces are simultaneously inverted. Our derived 410-km discontinuity depths for the northern and southern regions are at 420$\pm $15 and 425$\pm $15 km, respectively, with no observable uplift. The slab upper surface is inverted to be located about 50–70 km below the 410-km discontinuity. This location is between the depths of the 1 and 2 per cent P-wave speed perturbation contours of a regional 3-D full-waveform inversion (FWI) model, but we found twice the wave speed perturbation amplitude. A wave speed increase of 3.9–4.6 per cent within the slab, compared to 2.0–2.4 per cent from the 3-D FWI model, is necessary to fit the waveforms with the shortest period of 2 s, indicating that high-frequency waves are required to accurately resolve the detailed structures near the MTZ. 
    more » « less
  5. Abstract

    The Tonga‐Samoa system provides a unique tectonic context to study how a cold subducting slab interacts with a hot rising mantle plume. Here we present a 3‐D high‐resolution image of the 410‐km mantle discontinuity (the410) using seismic signals excited by deep‐focus earthquakes. The410is found to be ~30 km shallower inside the Tonga slab relative to the ambient mantle and ~20 km deeper further to the northwest under Fiji Islands. The downward deflection of the410under Fiji supports the hypothesis of a plume migration around the northern edge of the Tonga slab from Samoan hot spot to under Fiji due to fast trench rollback. The 50‐km topography difference in the410between the plume and the slab corresponds to a temperature difference of ~500 ± 100 K. The Samoan plume is inferred to be 200 ± 50 K hotter than the ambient mantle and supports a thermal origin for the plume.

     
    more » « less