skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Preparation and Characterization of N , N′ ‐Dialkyl‐1,3‐propanedialdiminium Chlorides, N , N′ ‐Dialkyl‐1,3‐propanedialdimines, and Lithium N , N′ ‐Dialkyl‐1,3‐propanedialdiminates
Abstract

We describe convenient preparations ofN,N′‐dialkyl‐1,3‐propanedialdiminium chlorides,N,N′‐dialkyl‐1,3‐propanedialdimines, and lithiumN,N′‐dialkyl‐1,3‐propanedialdiminates in which the alkyl groups are methyl, ethyl, isopropyl, ortert‐butyl. For the dialdiminium salts, the N2C3backbone is always in thetrans‐s‐transconfiguration. Three isomers are present in solution except for thetert‐butyl compound, for which only two isomers are present; increasing the steric bulk of theN‐alkyl substituents shifts the equilibrium away from the (Z,Z) isomer in favor of the (E,Z), and (E,E) isomers. For the neutral dialdimines, crystal structures show that the methyl and isopropyl compounds adopt the (E,Z) form, whereas thetert‐butyl compound is in the (E,E) form. In aprotic solvents all four dialdimines (as well as the lithium dialdiminate salts) adoptcis‐s‐cisconformations in which there presumably is either an intramolecular hydrogen bond (or a lithium cation) between the two nitrogen atoms.

 
more » « less
Award ID(s):
1954745
PAR ID:
10411033
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Helvetica Chimica Acta
Volume:
106
Issue:
5
ISSN:
0018-019X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The 1,4‐diacyloxylation of 1,3‐cyclohexadiene (CHD) affords valuable stereochemically defined scaffolds for natural product and pharmaceutical synthesis. Existingcis‐selective diacyloxylation protocols require superstoichiometric quantities of benzoquinone (BQ) or MnO2, which limit process sustainability and large‐scale application. In this report, reaction development and mechanistic studies are described that overcome these limitations by pairing catalytic BQ withtert‐butyl hydroperoxide as the stoichiometric oxidant. Catalytic quantities of bromide enable a switch fromtranstocisdiastereoselectivity. A catalyst with a 1:2 Pd:Br ratio supports highcisselectivity while retaining good rate and product yield. Further studies enable replacement of BQ with hydroquinone (HQ) as a source of cocatalyst, avoiding the handling of volatile and toxic BQ in large‐scale applications.

     
    more » « less
  2. Abstract

    The 1,4‐diacyloxylation of 1,3‐cyclohexadiene (CHD) affords valuable stereochemically defined scaffolds for natural product and pharmaceutical synthesis. Existingcis‐selective diacyloxylation protocols require superstoichiometric quantities of benzoquinone (BQ) or MnO2, which limit process sustainability and large‐scale application. In this report, reaction development and mechanistic studies are described that overcome these limitations by pairing catalytic BQ withtert‐butyl hydroperoxide as the stoichiometric oxidant. Catalytic quantities of bromide enable a switch fromtranstocisdiastereoselectivity. A catalyst with a 1:2 Pd:Br ratio supports highcisselectivity while retaining good rate and product yield. Further studies enable replacement of BQ with hydroquinone (HQ) as a source of cocatalyst, avoiding the handling of volatile and toxic BQ in large‐scale applications.

     
    more » « less
  3. Abstract

    A variety of 1‐aryl‐1,3‐dienes were isomerized fromEtoZisomers by photocatalysis using Ru(bpy)3[PF6]2and blue LED light. Enrichment of theZ‐isomer is thought to occur by selective triplet energy transfer from the photocatalyst to the stereoisomeric mixture. The 1,3‐diene starting materials are easily made by catalytic ene‐yne metathesis (EYM). To access 1,3‐dieneZ‐stereoisomers directly, a one pot procedure was developed. Additional 1,3‐dienes were investigated for both isomerization andZ‐enrichment. The combination of cross EYM with photocatalysis allows for the stereoconvergent synthesis ofZ‐1,3‐dienes.

     
    more » « less
  4. Abstract

    The rotational barrier about the CN carbamate bond ofN‐(4‐hydroxybutyl)‐N‐(2,2,2‐trifluoroethyl)tert‐butyl carbamate1was determined by variable temperature (VT)13C and19F NMR spectroscopy. The −CH2CF3 appendage reports on rotational isomerism and allows for the observation of separate signals for the E‐ and Z‐ensembles at low temperature. The activation barrier for E/Z‐isomerization was quantified using Eyring‐Polanyi theory which requires the measurements of the maximum difference in Larmor frequency Δνmax and the convergence temperature Tc. Both Δνmax and Tc were interpolated by analyzing sigmoidal functions fitted to data describing signal separation and the quality of the superposition of the E‐ and Z‐signals, respectively. Methods for generating the quality‐of‐fit parameters for Lorentzian line shape analysis are discussed. Our best experimental value for the rotational barrier ΔGc(1)=15.65±0.13 kcal/mol is compared to results of a higher level ab initio study of the modelN‐ethyl‐N‐(2,2,2‐trifluoroethyl) methyl carbamate.

     
    more » « less
  5. The cis – trans isomerization of (thio)amides was studied by DFT calculations to get the model for the higher preference for the cis conformation by guided predictive chemistry, suggesting how to select the alkyl/aryl substituents on the C/N atoms that lead to the trans isomer. Multilinear analysis, together with cross-validation analysis, helped to select the best fitting parameters to achieve the energy barriers of the cis to trans interconversion, as well as the relative stability between both isomers. Double experimental check led to the synthesis of the best trans candidate with sterically demanding t -butyl substituents, confirming the utility of predictive chemistry, bridging organic and computational chemistry. 
    more » « less