skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Selection-driven trait loss in independently evolved cavefish populations
Abstract

Laboratory studies have demonstrated that a single phenotype can be produced by many different genotypes; however, in natural systems, it is frequently found that phenotypic convergence is due to parallel genetic changes. This suggests a substantial role for constraint and determinism in evolution and indicates that certain mutations are more likely to contribute to phenotypic evolution. Here we use whole genome resequencing in the Mexican tetra,Astyanax mexicanus, to investigate how selection has shaped the repeated evolution of both trait loss and enhancement across independent cavefish lineages. We show that selection on standing genetic variation and de novo mutations both contribute substantially to repeated adaptation. Our findings provide empirical support for the hypothesis that genes with larger mutational targets are more likely to be the substrate of repeated evolution and indicate that features of the cave environment may impact the rate at which mutations occur.

 
more » « less
Award ID(s):
1933076
NSF-PAR ID:
10411077
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ecologists have long studied the evolution of niche breadth, including how variability in environments can drive the evolution of specialism and generalism. This concept is of particular interest in viruses, where niche breadth evolution may explain viral disease emergence, or underlie the potential for therapeutic measures like phage therapy. Despite the significance and potential applications of virus–host interactions, the genetic determinants of niche breadth evolution remain underexplored in many bacteriophages. In this study, we present the results of an evolution experiment with a model bacteriophage system,Escherichia virus T4,in several host environments: exposure toEscherichia coliC, exposure toE. coliK‐12, and exposure to bothE. coliC andE. coliK‐12. This experimental framework allowed us to investigate the phenotypic and molecular manifestations of niche breadth evolution. First, we show that selection on different hosts led to measurable changes in phage productivity in all experimental populations. Second, whole—genome sequencing of experimental populations revealed signatures of selection. Finally, clear and consistent patterns emerged across the host environments, especially the presence of new mutations in phage structural genes—genes encoding proteins that provide morphological and biophysical integrity to a virus. A comparison of mutations found across functional gene categories revealed that structural genes acquired significantly more mutations than other categories. Our findings suggest that structural genes are central determinants in bacteriophage niche breadth.

     
    more » « less
  2. Abstract

    Recent studies have shown that the repeated evolution of similar phenotypes in response to similar ecological conditions (here “parallel evolution”) often occurs through mutations in the same genes. However, many previous studies have focused on known candidate genes in a limited number of systems. Thus, the question of how often parallel phenotypic evolution is due to parallel genetic changes remains open. Here, we used quantitative trait locus (QTL) mapping in F2 intercrosses between lake and stream threespine stickleback (Gasterosteus aculeatus) from four independent watersheds on Vancouver Island, Canada to determine whether the same QTL underlie divergence in the same phenotypes across, between, and within watersheds. We find few parallel QTL, even in independent crosses from the same watershed or for phenotypes that have diverged in parallel. These findings suggest that different mutations can lead to similar phenotypes. The low genetic repeatability observed in these lake-stream systems contrasts with the higher genetic repeatability observed in other stickleback systems. We speculate that differences in evolutionary history, gene flow, and/or the strength and direction of selection might explain these differences in genetic parallelism and emphasize that more work is needed to move beyond documenting genetic parallelism to identifying the underlying causes.

     
    more » « less
  3. Abstract

    How changes in selective regimes affect trait evolution is an important open biological question. We take advantage of naturally occurring and repeated transitions from sexual to asexual reproduction in a New Zealand freshwater snail species,Potamopyrgus antipodarum, to address how evolution in an asexual context—including the potential for relaxed selection on male‐specific traits—influences sperm morphology. The occasional production of male offspring by the otherwise all‐female asexualP. antipodarumlineages affords a unique and powerful opportunity to assess the fate of sperm traits in a context where males are exceedingly rare. These comparisons revealed that the sperm produced by ‘asexual’ males are markedly distinct from sexual counterparts. We also found that the asexual male sperm harboured markedly higher phenotypic variation and was much more likely to be morphologically abnormal. Together, these data suggest that transitions to asexual reproduction might be irreversible, at least in part because male function is likely to be compromised. These results are also consistent with a scenario where relaxed selection and/or mutation accumulation in the absence of sex translates into rapid trait degeneration.

     
    more » « less
  4. Abstract

    Understanding the molecular basis of repeated evolution improves our ability to predict evolution across the tree of life. Only since the last decade has high‐throughput sequencing enabled comparative genome scans to thoroughly examine the repeatability of genetic changes driving repeated phenotypic evolution. The Asian corn borer (ACB),Ostrinia furnacalis(Guenée), and the European corn borer (ECB),Ostrinia nubilalis(Hübner), are two closely related moths displaying repeatable phenological adaptation to a wide range of climates on two separate continents, largely manifesting as changes in the timing of diapause induction and termination across latitude. Candidate genes underlying diapause variation in North American ECB have been previously identified. Here, we sampled seven ACB populations across 23 degrees of latitude in China to elucidate the genetic basis of diapause variation and evolutionary mechanisms driving parallel clinal responses in the two species. Using pooled whole‐genome sequencing (Pool‐seq) data, population genomic analyses revealed hundreds of single nucleotide polymorphisms (SNP) whose allele frequencies covaried with mean diapause phenotypes along the cline. Genes involved in circadian rhythm were over‐represented among candidate genes with strong signatures of spatially varying selection. Only one of two circadian clock genes associated with diapause evolution in ECB showed evidence of reuse in ACB (period [per]), butperalleles were not shared between species nor with their outgroup, implicating independent mutational paths. Nonetheless, evidence of adaptive introgression was discovered at putative diapause loci located elsewhere in the genome, suggesting that de novo mutations and introgression might both underlie the repeated phenological evolution.

     
    more » « less
  5. Throughout the evolutionary tree, there are gains and losses of morphological features, physiological processes, and behavioral patterns. Losses are perhaps nowhere so prominent as for subterranean organisms, which typically show reductions or losses of eyes and pigment. These losses seem easy to explain without recourse to natural selection. Its most modern form is the accumulation of selectively neutral, structurally reducing mutations. Selectionist explanations include direct selection, often involving metabolic efficiency in resource poor subterranean environments, and pleiotropy, where genes affecting eyes and pigment have other effects, such as increasing extra-optic sensory structures. This dichotomy echoes the debate in evolutionary biology in general about the sufficiency of natural selection as an explanation of evolution, e.g., Kimura’s neutral mutation theory. Tests of the two hypotheses have largely been one-sided, with data supporting that one or the other processes is occurring. While these tests have utilized a variety of subterranean organisms, the Mexican cavefish,Astyanax mexicanus, which has eyed extant ancestral-like surface fish conspecifics, is easily bred in the lab, and whose whole genome has been sequenced, is the favored experimental organism. However, with few exceptions, tests for selection versus neutral mutations contain limitations or flaws. Notably, these tests are often one sided, testing for the presence of one or the other process. In fact, it is most likely that both processes occur and make a significant contribution to the two most studied traits in cave evolution: eye and pigment reduction. Furthermore, narrow focus on neutral mutation hypothesis versus selection to explain cave-evolved traits often fails, at least in the simplest forms of these hypotheses, to account for aspects that are likely essential for understanding cave evolution: migration or epigenetic effects. Further, epigenetic effects and phenotypic plasticity have been demonstrated to play an important role in cave evolution in recent studies. Phenotypic plasticity does not by itself result in genetic change of course, but plasticity can reveal cryptic genetic variation which then selection can act on. These processes may result in a radical change in our thinking about evolution of subterranean life, especially the speed with which it may occur. Thus, perhaps it is better to ask what role the interaction of genes and environment plays, in addition to natural selection and neutral mutation.

     
    more » « less