skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Experimental evolution for niche breadth in bacteriophage T4 highlights the importance of structural genes
Abstract Ecologists have long studied the evolution of niche breadth, including how variability in environments can drive the evolution of specialism and generalism. This concept is of particular interest in viruses, where niche breadth evolution may explain viral disease emergence, or underlie the potential for therapeutic measures like phage therapy. Despite the significance and potential applications of virus–host interactions, the genetic determinants of niche breadth evolution remain underexplored in many bacteriophages. In this study, we present the results of an evolution experiment with a model bacteriophage system,Escherichia virus T4,in several host environments: exposure toEscherichia coliC, exposure toE. coliK‐12, and exposure to bothE. coliC andE. coliK‐12. This experimental framework allowed us to investigate the phenotypic and molecular manifestations of niche breadth evolution. First, we show that selection on different hosts led to measurable changes in phage productivity in all experimental populations. Second, whole—genome sequencing of experimental populations revealed signatures of selection. Finally, clear and consistent patterns emerged across the host environments, especially the presence of new mutations in phage structural genes—genes encoding proteins that provide morphological and biophysical integrity to a virus. A comparison of mutations found across functional gene categories revealed that structural genes acquired significantly more mutations than other categories. Our findings suggest that structural genes are central determinants in bacteriophage niche breadth.  more » « less
Award ID(s):
1736253
PAR ID:
10459662
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
MicrobiologyOpen
Volume:
9
Issue:
2
ISSN:
2045-8827
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The prevalence of multidrug-resistant bacteria and their increased pathogenicity has led to a growing interest in metallic antimicrobial materials and bacteriophages as potential alternatives to conventional antibiotics. This study examines how resistance to excess iron (III) influences the evolution of bacteriophage resistance in the bacterium Escherichia coli. We utilized experimental evolution in E. coli to test the effect of the evolution of phage T7 resistance on populations resistant to excess iron (III) and populations without excess iron resistance. Phage resistance evolved rapidly in both groups. Dual-resistant (iron (III)/phage) populations were compared to their controls (excess iron (III)-resistant, phage-resistant, no resistance to either) for their performance against each stressor, excess iron (III) and phage; and correlated resistances to excess iron (II), gallium (III), silver (I) and conventional antibiotics. Excess iron (III)/phage-resistant populations demonstrated superior 24 h growth compared to all other populations when exposed to increasing concentrations of iron (II, III), gallium (III), ampicillin, and tetracycline. No differences in 24 h growth were shown between excess iron (III)/phage-resistant and excess iron (III)-resistant populations in chloramphenicol, sulfonamide, and silver (I). The genomic analysis identified selective sweeps in the iron (III) resistant (rpoB, rpoC, yegB, yeaG), phage-resistant (clpX →/→ lon, uvaB, yeaG, fliR, gatT, ypjF, waaC, rpoC, pgi, and yjbH) and iron (III)/phage resistant populations (rcsA, hldE, rpoB, and waaC). E. coli selected for resistance to both excess iron (III) and T7 phage showed some evidence of a synergistic effect on various components of fitness. Dual selection resulted in correlated resistances to ionic metals {iron (II), gallium (III), and silver (I)} and several conventional antibiotics. There is a likelihood that this sort of combination antimicrobial treatment may result in bacterial variants with multiple resistances. 
    more » « less
  2. Barr, Jeremy J. (Ed.)
    Numerous ecological interactions among microbes—for example, competition for space and resources, or interaction among phages and their bacterial hosts—are likely to occur simultaneously in multispecies biofilm communities. While biofilms formed by just a single species occur, multispecies biofilms are thought to be more typical of microbial communities in the natural environment. Previous work has shown that multispecies biofilms can increase, decrease, or have no measurable impact on phage exposure of a host bacterium living alongside another species that the phages cannot target. The reasons underlying this variability are not well understood, and how phage–host encounters change within multispecies biofilms remains mostly unexplored at the cellular spatial scale. Here, we study how the cellular scale architecture of model 2-species biofilms impacts cell–cell and cell–phage interactions controlling larger scale population and community dynamics. Our system consists of dual culture biofilms ofEscherichia coliandVibrio choleraeunder exposure to T7 phages, which we study using microfluidic culture, high-resolution confocal microscopy imaging, and detailed image analysis. As shown previously, sufficiently mature biofilms ofE.colican protect themselves from phage exposure via their curli matrix. Before this stage of biofilm structural maturity,E.coliis highly susceptible to phages; however, we show that these bacteria can gain lasting protection against phage exposure if they have become embedded in the bottom layers of highly packed groups ofV.choleraein co-culture. This protection, in turn, is dependent on the cell packing architecture controlled byV.choleraebiofilm matrix secretion. In this manner,E.colicells that are otherwise susceptible to phage-mediated killing can survive phage exposure in the absence of de novo resistance evolution. While co-culture biofilm formation withV.choleraecan confer phage protection toE.coli, it comes at the cost of competing withV.choleraeand a disruption of normal curli-mediated protection forE.colieven in dual species biofilms grown over long time scales. This work highlights the critical importance of studying multispecies biofilm architecture and its influence on the community dynamics of bacteria and phages. 
    more » « less
  3. Dyson, Zoe A (Ed.)
    ABSTRACT Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains ofEscherichia coliandSalmonella entericaby competing a generalist T5-like phage able to infect both prey against P22vir, anS. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that thein vitrocost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCEThere is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and anin vitrosystem consisting ofEscherichia coli,Salmonella enterica, a T5-like generalist phage, and the specialist phage P22virto highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections. 
    more » « less
  4. Phage satellites are mobile genetic elements that propagate by parasitizing bacteriophage replication. We report here the discovery of abundant and diverse phage satellites that were packaged as concatemeric repeats within naturally occurring bacteriophage particles in seawater. These same phage-parasitizing mobile elements were found integrated in the genomes of dominant co-occurring bacterioplankton species. Like known phage satellites, many marine phage satellites encoded genes for integration, DNA replication, phage interference, and capsid assembly. Many also contained distinctive gene suites indicative of unique virus hijacking, phage immunity, and mobilization mechanisms. Marine phage satellite sequences were widespread in local and global oceanic virioplankton populations, reflecting their ubiquity, abundance, and temporal persistence in marine planktonic communities worldwide. Their gene content and putative life cycles suggest they may impact host-cell phage immunity and defense, lateral gene transfer, bacteriophage-induced cell mortality and cellular host and virus productivity. Given that marine phage satellites cannot be distinguished from bona fide viral particles via commonly used microscopic techniques, their predicted numbers (∼3.2 × 10 26 in the ocean) may influence current estimates of virus densities, production, and virus-induced mortality. In total, the data suggest that marine phage satellites have potential to significantly impact the ecology and evolution of bacteria and their viruses throughout the oceans. We predict that any habitat that harbors bacteriophage will also harbor similar phage satellites, making them a ubiquitous feature of most microbiomes on Earth. 
    more » « less
  5. Gao, Beile (Ed.)
    ABSTRACT Escherichia coli can survive for long periods in batch culture in the laboratory, where they experience a stressful and heterogeneous environment. During this incubation, E. coli acquires mutations that are selected in response to this environment, ultimately leading to evolved populations that are better adapted to these complex conditions, which can lead to a better understanding of evolutionary mechanisms. Mutations in regulatory genes often play a role in adapting to heterogeneous environments. To identify such mutations, we examined transcriptional differences during log phase growth in unaged cells compared to those that had been aged for 10 days and regrown. We identified expression changes in genes involved in motility and chemotaxis after adaptation to long-term cultures. We hypothesized that aged populations would also have phenotypic changes in motility and that motility may play a role in survival and adaptation to long-term cultures. While aged populations did show an increase in motility, this increase was not essential for survival in long-term cultures. We identified mutations in the regulatory gene sspA and other genes that may contribute to the observed differences in motility. Taken together, these data provide an overall picture of the role of mutations in regulatory genes for adaptation while underscoring that all changes that occur during evolution in stressful environments are not necessarily adaptive. IMPORTANCE Understanding how bacteria adapt in long-term cultures aids in both better treatment options for bacterial infections and gives insight into the mechanisms involved in bacterial evolution. In the past, it has been difficult to study these organisms in their natural environments. By using experimental evolution in heterogeneous and stressful laboratory conditions, we can more closely mimic natural environments and examine evolutionary mechanisms. One way to observe these mechanisms is to look at transcriptomic and genomic data from cells adapted to these complex conditions. Here, we found that although aged cells increase motility, this increase is not essential for survival in these conditions. These data emphasize that not all changes that occur due to evolutionary processes are adaptive, but these observations could still lead to hypotheses about the causative mutations. The information gained here allow us to make inferences about general mechanisms underlying phenotypic changes due to evolution. 
    more » « less