skip to main content


Title: An open-source platform for sub-$$\textrm{g}$$, sub-$$\upmu$$A data loggers
Abstract Background

Rapid improvements in inexpensive, low-power, movement and environmental sensors have sparked a revolution in animal behavior research by enabling the creation of data loggers (henceforth, tags) that can capture fine-grained behavioral data over many months. Nevertheless, development of tags that are suitable for use with small species, for example, birds under 25 g, remains challenging because of the extreme mass (under 1$$\textrm{g}$$g) and power (average current under 1$$\upmu$$μA) constraints. These constraints dictate that a tag should carry exactly the sensors required for a given experiment and the data collection protocol should be specialized to the experiment. Furthermore, it can be extremely challenging to design hardware and software to achieve the energy efficiency required for long tag life.

Results

We present an activity monitor, BitTag, that can continuously collect activity data for 4–12 months at 0.5–0.8$$\textrm{g}$$g, depending upon battery choice, and which has been used to collect more than 500,000 h of data in a variety of experiments. The BitTag architecture provides a general platform to support the development and deployment of custom sub-$$\textrm{g}$$gtags. This platform consists of a flexible tag architecture, software for both tags and host computers, and hardware to provide the host/tag interface necessary for preparing tags for “flight” and for accessing tag data “post-flight”. We demonstrate how the BitTag platform can be extended to quickly develop novel tags with other sensors while satisfying the 1g/1$$\upmu$$μA mass and power requirements through the design of a novel barometric pressure sensing tag that can collect pressure and temperature data every 60$$\textrm{s}$$sfor a year with mass under 0.6$$\textrm{g}$$g.

 
more » « less
NSF-PAR ID:
10411083
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Animal Biotelemetry
Volume:
11
Issue:
1
ISSN:
2050-3385
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$cm2V-1s-1), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of anin-planeelectric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from$$\lambda =3$$λ=3to 12$$\upmu$$μm by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$11\times 10^3$$11×103W/$$\hbox {m}^2$$m2at$$T=2000$$T=2000K for a bias voltage of$$V=23$$V=23V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$\upmu$$μm and 150$$\upmu$$μm, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$12^\circ$$12and$$80^\circ$$80by tuning the Fermi energy between$$E_F=1.0$$EF=1.0eV and$$E_F=0.25$$EF=0.25eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.

     
    more » « less
  2. A<sc>bstract</sc>

    A measurement of the top quark pole mass$$ {m}_{\textrm{t}}^{\textrm{pole}} $$mtpolein events where a top quark-antiquark pair ($$ \textrm{t}\overline{\textrm{t}} $$tt¯) is produced in association with at least one additional jet ($$ \textrm{t}\overline{\textrm{t}} $$tt¯+jet) is presented. This analysis is performed using proton-proton collision data at$$ \sqrt{s} $$s= 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to a total integrated luminosity of 36.3 fb1. Events with two opposite-sign leptons in the final state (e+e,μ+μ, e±μ) are analyzed. The reconstruction of the main observable and the event classification are optimized using multivariate analysis techniques based on machine learning. The production cross section is measured as a function of the inverse of the invariant mass of the$$ \textrm{t}\overline{\textrm{t}} $$tt¯+jet system at the parton level using a maximum likelihood unfolding. Given a reference parton distribution function (PDF), the top quark pole mass is extracted using the theoretical predictions at next-to-leading order. For the ABMP16NLO PDF, this results in$$ {m}_{\textrm{t}}^{\textrm{pole}} $$mtpole= 172.93±1.36 GeV.

     
    more » « less
  3. Abstract

    Measurements of the associated production of a W boson and a charm ($${\text {c}}$$c) quark in proton–proton collisions at a centre-of-mass energy of 8$$\,\text {TeV}$$TeVare reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7$$\,\text {fb}^{-1}$$fb-1collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction$$\sigma (\text {p}\text {p}\rightarrow \text {W}+ {\text {c}}+ \text {X}) {\mathcal {B}}(\text {W}\rightarrow \ell \upnu )$$σ(ppW+c+X)B(Wν), where$$\ell = \text {e}$$=eor$$\upmu $$μ, and the cross section ratio$$\sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{+} + \bar{{\text {c}}} + \text {X}}) / \sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{-} + {\text {c}}+ \text {X}})$$σ(ppW++c¯+X)/σ(ppW-+c+X)are measured in a fiducial volume and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.

     
    more » « less
  4. Abstract

    A search is reported for pairs of light Higgs bosons ($${\textrm{H}} _1$$H1) produced in supersymmetric cascade decays in final states with small missing transverse momentum. A data set of LHC$$\hbox {pp}$$ppcollisions collected with the CMS detector at$$\sqrt{s}=13\,\text {TeV} $$s=13TeVand corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1is used. The search targets events where both$${\textrm{H}} _1$$H1bosons decay into Equation missing<#comment/>pairs that are reconstructed as large-radius jets using substructure techniques. No evidence is found for an excess of events beyond the background expectations of the standard model (SM). Results from the search are interpreted in the next-to-minimal supersymmetric extension of the SM, where a “singlino” of small mass leads to squark and gluino cascade decays that can predominantly end in a highly Lorentz-boosted singlet-like$${\textrm{H}} _1$$H1and a singlino-like neutralino of small transverse momentum. Upper limits are set on the product of the squark or gluino pair production cross section and the square of the Equation missing<#comment/>branching fraction of the$${\textrm{H}} _1$$H1in a benchmark model containing almost mass-degenerate gluinos and light-flavour squarks. Under the assumption of an SM-like Equation missing<#comment/>branching fraction,$${\textrm{H}} _1$$H1bosons with masses in the range 40–120$$\,\text {GeV}$$GeVarising from the decays of squarks or gluinos with a mass of 1200–2500$$\,\text {GeV}$$GeVare excluded at 95% confidence level.

     
    more » « less
  5. Abstract

    The search for neutrino events in correlation with gravitational wave (GW) events for three observing runs (O1, O2 and O3) from 09/2015 to 03/2020 has been performed using the Borexino data-set of the same period. We have searched for signals of neutrino-electron scattering and inverse beta-decay (IBD) within a time window of$$\pm \, 1000$$±1000 s centered at the detection moment of a particular GW event. The search was done with three visible energy thresholds of 0.25, 0.8 and 3.0 MeV. Two types of incoming neutrino spectra were considered: the mono-energetic line and the supernova-like spectrum. GW candidates originated by merging binaries of black holes (BHBH), neutron stars (NSNS) and neutron star and black hole (NSBH) were analyzed separately. Additionally, the subset of most intensive BHBH mergers at closer distances and with larger radiative mass than the rest was considered. In total, follow-ups of 74 out of 93 gravitational waves reported in the GWTC-3 catalog were analyzed and no statistically significant excess over the background was observed. As a result, the strongest upper limits on GW-associated neutrino and antineutrino fluences for all flavors ($$\nu _e, \nu _\mu , \nu _\tau $$νe,νμ,ντ) at the level$$10^9{-}10^{15}~\textrm{cm}^{-2}\,\textrm{GW}^{-1}$$109-1015cm-2GW-1have been obtained in the 0.5–5 MeV neutrino energy range.

     
    more » « less