skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structures of Three Alkaline-Earth Metal Germanides Refined from Single-Crystal X-ray Diffraction Data
The calcium- and strontium- alumo-germanides SrxCa1–xAl2Ge2 (x ≈ 0.4) and SrAl2Ge2 have been synthesized and structurally characterized. Additionally, a binary calcium germanide CaGe has also been identified as a byproduct. All three crystal structures have been established from single-crystal X-ray diffraction methods and refined with high accuracy and precision. The binary CaGe crystallizes with a CrB-type structure in the orthorhombic space group Cmcm (no. 63; Z = 4; Pearson symbol oC8), where the germanium atoms are interconnected into infinite zigzag chains, formally [Ge]2−. The calcium atoms are arranged in monocapped trigonal prisms, centered by Ge atoms. SrxCa1−xAl2Ge2 (x ≈ 0.4) and SrAl2Ge2 have been confirmed to crystallize with a CaAl2Si2-type structure in the trigonal space group P3¯m1 (no. 164; Z = 1; Pearson symbol hP5), where the germanium and aluminum atoms form puckered double-layers, formally [Al2Ge2]2−. The calcium atoms are located between the layers and reside inside distorted octahedra of Ge atoms. All presented structures have a valence electron count satisfying the octet rules (e.g., Ca2+Ge2− and Ca2+[Al2Ge2]2−) and can be regarded as Zintl phases.  more » « less
Award ID(s):
2004579
PAR ID:
10411124
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemistry
Volume:
4
Issue:
4
ISSN:
2624-8549
Page Range / eLocation ID:
1429 to 1438
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An extended series of rare‐earth metal calcium germanides have been synthesized and structurally characterized. The compounds have the general formulaRE5−xCaxGe4(1.5<x<3.6;RE=rare‐earth metal; Ce, Nd, Sm, Tb−Lu) and their structures have been established from single‐crystal X‐ray diffraction methods. They crystallize with the Gd5Si4‐type in the orthorhombic space groupPnma(No. 62;Z=4; Pearson symboloP36), where the germanium atoms are interconnected into two kinds of Ge2‐dimers, formally [Ge2]6−. These studies show that Ca can be successfully incorporated into the hostRE5Ge4structure, whereby trivalent rare‐earth metal atoms can be substituted by divalent calcium atoms. Rare‐earth metal and calcium atoms are arranged in distorted trigonal prisms and cubes, centered by either Ge or Ca atoms. On one of the metal sites, the substitution is preferential and in 9 out of the 10 refined structures, the Wyckoff site 4cis found almost exclusively occupied by Ca. On the other two metal sites the substitution patterns appear to be governed by the mismatch between the size of theRE3+and Ca2+ions. This work further demonstrates the ability for the Gd5Si4structure type to accommodate the substitution of a non‐magnetic element while maintaining the global structural integrity. 
    more » « less
  2. Abstract Calcium germanides with two mid‐late rare‐earth metals, Ca5−xGdxGe3and Ca5−xTbxGe3(x≈0.1−0.2), have been synthesized and structurally characterized. Additionally, a lanthanum‐rich germanide with calcium substitutions, La5−xCaxGe3(x≈0.5) has also been identified. The three structures have been established from single‐crystal X‐ray diffraction methods and confirmed to crystallize with the Cr5B3‐type in the tetragonal space groupI4/mcm(no. 140;Z=4; Pearson symboltI32), where part of the germanium atoms are interconnected into Ge2‐dimers, formally [Ge2]6−. Rare‐earth metal and calcium atoms are arranged in distorted trigonal prisms, square‐antiprisms and cubes, centered by Ge or rare‐earth/calcium metal atoms. These studies show that the amount of trivalent rare‐earth metal atoms substituting divalent calcium atoms is in direct correlation with the lengths of the Ge−Ge bond within the Ge2‐dimers, with distance varying between 2.58 Å in Ca5−xGdxGe3and 2.75 Å in La5−xCaxGe3. Such an elongation of the Ge−Ge bond is consistent with the notion that the parent Ca5Ge3Zintl phase (e. g. (Ca2+)5[Ge2]6−[Ge4−]) is being driven out of the ideal valence electron count and further reduced. In this context, this work demonstrates the ability of the germanides with the Cr5B3structure type to accommodate substitutions and wider valence electron count while maintaining their global structural integrity. 
    more » « less
  3. null (Ed.)
    Four novel ternary phases have been prepared in the system Ca–Li–Sn using both the metal flux method and conventional high-temperature synthesis. Each of the obtained compositions represents its own (new) structure type, and the structures feature distinct polyanionic Sn units. Ca 4 LiSn 6 (space group Pbcm , Pearson symbol oP 44) accommodates infinite chains, made up of cyclopentane-like [Sn 5 ]-rings, which are bridged by Sn atoms. The Sn atoms in this structure are two- and three-bonded. The anionic substructure of Ca 9 Li 6+x Sn 13–x ( x ≈ 0.28, space group C 2/ m , Pearson symbol mS 56) displays extensive mixing of Li and Sn and combination of single-bonded and hypervalent interactions between the Sn atoms. Hypervalent bonding is also pronounced in the structure of the third compound, Ca 2 LiSn 3 (space group Pmm 2, Pearson symbol oP 18) with quasi-two-dimensional polyanionic subunits and a variety of coordination environments of the Sn atoms. One-dimensional [Sn 10 ]-chains with an intricate topology of cis - and trans -Sn–Sn bonds exist in the structure of Ca 9–x Li 2 Sn 10 ( x ≈ 0.16, space group C 2/ m , Pearson symbol mS 42), and the Sn–Sn bonding in this case demonstrates the characteristics of an intermediate between single- and double- bond-order. The peculiarities of the bonding are discussed in the context of the Zintl approach, which captures the essence of the main chemical interactions. The electronic structures of all four compounds have also been analyzed in full detail using first-principles calculations. 
    more » « less
  4. Clathrate phases with crystal structures exhibiting complex disorder have been the subject of many prior studies. Here we report syntheses, crystal and electronic structure, and chemical bonding analysis of a Li-substituted Ge-based clathrate phase with the refined chemical formula Ba8Li5.0(1)Ge41.0, which is a rare example of ternary clathrate-I where alkali metal atoms substitute framework Ge atoms. Two different synthesis methods to grow single crystals of the new clathrate phase are presented, in addition to the classical approach towards polycrystalline materials by combining pure elements in desired stoichiometric ratios. Structure elucidations for samples from different batches were carried out by single-crystal and powder X-ray diffraction methods. The ternary Ba8Li5.0(1)Ge41.0 phase crystallizes in the cubic type-I clathrate structure (space group no. 223, a  10.80 Å), with the unit cell being substantially larger compared to the binary phase Ba8Ge43 (Ba8□3Ge43, a  10.63 Å). The expansion of the unit cell is the result of the Li atoms filling vacancies and substituting atoms in the Ge framework, with Li and Ge co-occupying one crystallographic (6c) site. As such, the Li atoms are situated in four-fold coordination environment surrounded by equidistant Ge atoms. Analysis of chemical bonding applying the electron density/ electron localizability approach reveals ionic interaction of barium with the Li–Ge framework, while the lithium-germanium bonds are strongly polar covalent. 
    more » « less
  5. Reported is the synthesis of a new polar intermetallic phase, Ca4CdIn2Ge4, crystals of which can be readily obtained employing the In‐flux method. The structure and the chemical composition of the new compound are established based on single‐crystal X‐Ray diffraction and energy‐dispersive X‐Ray spectroscopy data. Ca4CdIn2Ge4crystallizes in a monoclinic crystal system with the space groupC2/m(no. 12) with lattice parametersa = 16.7383(12) Å,b = 4.4235(3) Å,c = 7.4322(5) Å, andβ = 106.560(1)°. The structure can formally be classified as a variant of the Mg5Si6structure type (Pearson symbolmS22). Considering the InGe and CdGe interactions as mostly covalent, the polyanionic substructure can be rationalized as consisting of ribbons of edge‐shared [InGe4] tetrahedra connected by Ge2dimers and bridged by Cd atoms in nearly square‐planar environment. Chemical bonding analysis based on TB‐LMTO‐ASA calculations affirms the notion for covalent character of the GeGe bonding with the dimers. The calculations also show that the bonding in the tetrahedra is more covalent in character than the bonding in square‐planar fragments, with the CaGe interactions being the least covalent among all interactions, though not exactly ionic. 
    more » « less