skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Injecting Language Workbench Technology into Mainstream Languages
Eelco Visser envisioned a future where DSLs become a commonplace abstraction in software development. He took strides towards implementing this vision with the Spoofax language workbench. However, his vision is far from the mainstream of programming today. How will the many mainstream programmers encounter and adopt language workbench technology? We propose that the macro systems found in emerging industrial languages open a path towards delivering language workbenches as easy-to-adopt libraries. To develop the idea, we sketch an implementation of a language workbench as a macro-library atop Racket and identify the key features of the macro system needed to enable this evolution path. DOI: 10.4230/OASIcs.EVCS.2023.3 (but your system choked on it)  more » « less
Award ID(s):
2007686
PAR ID:
10411141
Author(s) / Creator(s):
Editor(s):
Lammel, Ralf and
Date Published:
Journal Name:
Open access series in informatics
Volume:
109
ISSN:
2190-6807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lämmel, Ralf; Mosses, Peter D; Steimann, Friedrich (Ed.)
    Eelco Visser envisioned a future where DSLs become a commonplace abstraction in software development. He took strides towards implementing this vision with the Spoofax language workbench. However, his vision is far from the mainstream of programming today. How will the many mainstream programmers encounter and adopt language workbench technology? We propose that the macro systems found in emerging industrial languages open a path towards delivering language workbenches as easy-to-adopt libraries. To develop the idea, we sketch an implementation of a language workbench as a macro-library atop Racket and identify the key features of the macro system needed to enable this evolution path. 
    more » « less
  2. We consider the problem of Vision-and-Language Navigation (VLN). The majority of current methods for VLN are trained end-to-end using either unstructured memory such as LSTM, or using cross-modal attention over the egocentric observations of the agent. In contrast to other works, our key insight is that the association between language and vision is stronger when it occurs in explicit spatial representations. In this work, we propose a cross-modal map learning model for vision-and-language navigation that first learns to predict the top-down semantics on an egocentric map for both observed and unobserved regions, and then predicts a path towards the goal as a set of way-points. In both cases, the prediction is informed by the language through cross-modal attention mechanisms. We experimentally test the basic hypothesis that language-driven navigation can be solved given a map, and then show competitive results on the full VLN-CE benchmark. 
    more » « less
  3. null (Ed.)
    Communication between human and mobile agents is getting increasingly important as such agents are widely deployed in our daily lives. Vision-and-Dialogue Navigation is one of the tasks that evaluate the agent’s ability to interact with humans for assistance and navigate based on natural language responses. In this paper, we explore the Navigation from Dialogue History (NDH) task, which is based on the Cooperative Vision-and-Dialogue Navigation (CVDN) dataset, and present a state-of-the-art model which is built upon Vision-Language transformers. However, despite achieving competitive performance, we find that the agent in the NDH task is not evaluated appropriately by the primary metric – Goal Progress. By analyzing the performance mismatch between Goal Progress and other metrics (e.g., normalized Dynamic Time Warping) from our state-of-the-art model, we show that NDH’s sub-path based task setup (i.e., navigating partial trajectory based on its correspondent subset of the full dialogue) does not provide the agent with enough supervision signal towards the goal region. Therefore, we propose a new task setup called NDH-Full which takes the full dialogue and the whole navigation path as one instance. We present a strong baseline model and show initial results on this new task. We further describe several approaches that we try, in order to improve the model performance (based on curriculum learning, pre-training, and data-augmentation), suggesting potential useful training methods on this new NDH-Full task. 
    more » « less
  4. null (Ed.)
    Abstract This work proposes vision-only navigation strategies for an autonomous underwater robot. This approach is a step towards solving the coverage path planning problem in a 3-D environment for surveying underwater structures. Given the challenging conditions of the underwater domain, it is very complicated to obtain accurate state estimates reliably. Consequently, it is a great challenge to extend known path planning or coverage techniques developed for aerial or ground robot controls. In this work, we are investigating a navigation strategy utilizing only vision to assist in covering a complex underwater structure. We propose to use a navigation strategy akin to what a human diver will execute when circumnavigating around a region of interest, in particular when collecting data from a shipwreck. The focus of this article is a step towards enabling the autonomous operation of lightweight robots near underwater wrecks in order to collect data for creating photo-realistic maps and volumetric 3-D models while at the same time avoiding collisions. The proposed method uses convolutional neural networks to learn the control commands based on the visual input. We have demonstrated the feasibility of using a system based only on vision to learn specific strategies of navigation with 80% accuracy on the prediction of control command changes. Experimental results and a detailed overview of the proposed method are discussed. 
    more » « less
  5. In recent years, the FAIR guiding principles and the broader concept of open science has grown in importance in academic research, especially as funding entities have aggressively promoted public sharing of research products. Key to public research sharing is deposition of datasets into online data repositories, but it can be a chore to transform messy unstructured data into the forms required by these repositories. To help generate Metabolomics Workbench depositions, we have developed the MESSES (Metadata from Experimental SpreadSheets Extraction System) software package, implemented in the Python 3 programming language and supported on Linux, Windows, and Mac operating systems. MESSES helps transform tabular data from multiple sources into a Metabolomics Workbench specific deposition format. The package provides three commands, extract, validate, and convert, that implement a natural data transformation workflow. Moreover, MESSES facilitates richer metadata capture than is typically attempted by manual efforts. The source code and extensive documentation is hosted on GitHub and is also available on the Python Package Index for easy installation. 
    more » « less