The estrous cycle regulates rhythms of locomotor activity, body temperature, and circadian gene expression. In female mice, activity increases on the night of proestrus, when elevated estrogens cause ovulation. Exogenous estradiol regulates eating behavior rhythms in female mice fed a high-fat diet, but it is unknown whether endogenous estrogens regulate eating rhythms. In this study, we investigated whether diurnal and circadian eating behavior rhythms change systematically across the estrous cycle. We first studied diurnal eating behavior rhythms in female C57BL/6J mice in 12L:12D. Estrous cycle stages were determined by vaginal cytology while eating behavior and wheel revolutions were continuously measured. The mice had regular 4- to 5-day estrous cycles. Consistent with prior studies, the greatest number of wheel revolutions occurred on the night of proestrus into estrus when systemic levels of estrogens peak. The amplitude, or robustness, of the eating behavior rhythm also fluctuated with 4- to 5-day cycles and peaked primarily during proestrus or estrus. The phases of eating behavior rhythms fluctuated, but not at 4- or 5-day intervals, and phases did not correlate with estrous cycle stages. After ovariectomy, the eating behavior rhythm amplitude fluctuated at irregular intervals. In constant darkness, the amplitude of the circadian eating behavior rhythm peaked every 4 or 5 days and coincided with the circadian day that had the greatest number of wheel revolutions, a marker of proestrus. These data suggest that fluctuations of ovarian hormones across the estrous cycle temporally organize the robustness of circadian eating behavior rhythms so that it peaks during ovulation and sexual receptivity. 
                        more » 
                        « less   
                    
                            
                            Chronic environmental circadian disruption increases atherosclerosis and dyslipidemia in female, but not male, ApolipoproteinE-deficient mice
                        
                    
    
            Shift work chronically disrupts circadian rhythms and increases the risk of developing cardiovascular disease. However, the mechanisms linking shift work and cardiovascular disease are largely unknown. The goal of this study was to investigate the effects of chronically shifting the light-dark (LD) cycle, which models the disordered exposure to light that may occur during shift work, on atherosclerosis. Atherosclerosis is the progressive accumulation of lipid-filled lesions within the artery wall and is the leading cause of cardiovascular disease. We studied ApolipoproteinE -deficient ( ApoE −/− ) mice that are a well-established model of atherosclerosis. Male and female ApoE −/− mice were housed in control 12L:12D or chronic LD shift conditions for 12 weeks and fed low-fat diet. In the chronic LD shift condition, the light-dark cycle was advanced by 6 h every week. We found that chronic LD shifts exacerbated atherosclerosis in female, but not male, ApoE −/− mice. In females, chronic LD shifts increased total serum cholesterol concentrations with increased atherogenic VLDL/LDL particles. Chronic LD shifts did not affect food intake, activity, or body weight in male or female ApoE −/− mice. We also examined eating behavior in female ApoE −/− mice since aberrant meal timing has been linked to atherosclerosis. The phases of eating behavior rhythms, like locomotor activity rhythms, gradually shifted to the new LD cycle each week in the chronic LD shift group, but there was no effect of the LD shift on the amplitudes of the eating rhythms. Moreover, the duration of fasting intervals was not different in control 12L:12D compared to chronic LD shift conditions. Together these data demonstrate that female ApoE −/− mice have increased atherosclerosis when exposed to chronic LD shifts due to increased VLDL/LDL cholesterol, independent of changes in energy balance or feeding-fasting cycles. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2045267
- PAR ID:
- 10411215
- Date Published:
- Journal Name:
- Frontiers in Physiology
- Volume:
- 14
- ISSN:
- 1664-042X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract Shift work, performed by approximately 21 million Americans, is irregular or unusual work schedule hours occurring after 6:00 pm. Shift work has been shown to disrupt circadian rhythms and is associated with several adverse health outcomes and chronic diseases such as cancer, gastrointestinal and psychiatric diseases and disorders. It is unclear if shift work influences the complications associated with certain infectious agents, such as pelvic inflammatory disease, ectopic pregnancy and tubal factor infertility resulting from genital chlamydial infection. We used an Environmental circadian disruption (ECD) model mimicking circadian disruption occurring during shift work, where mice had a 6-h advance in the normal light/dark cycle (LD) every week for a month. Control group mice were housed under normal 12/12 LD cycle. Our hypothesis was that compared to controls, mice that had their circadian rhythms disrupted in this ECD model will have a higher Chlamydia load, more pathology and decreased fertility rate following Chlamydia infection. Results showed that, compared to controls, mice that had their circadian rhythms disrupted (ECD) had higher Chlamydia loads, more tissue alterations or lesions, and lower fertility rate associated with chlamydial infection. Also, infected ECD mice elicited higher proinflammatory cytokines compared to mice under normal 12/12 LD cycle. These results imply that there might be an association between shift work and the increased likelihood of developing more severe disease from Chlamydia infection.more » « less
- 
            Atherosclerosis-related cardiovascular diseases are a leading cause of mortality worldwide. Vascular smooth muscle cells (VSMCs) comprise the medial layer of the arterial wall and undergo phenotypic switching during atherosclerosis to a synthetic phenotype capable of proliferation and migration. The surrounding environment undergoes alterations in extracellular matrix (ECM) stiffness and composition in addition to an increase in addition to an increase in cholesterol content. Using an atherosclerotic murine model, we analyzed how the mechanics of VSMCs isolated from western diet fed apolipoprotein-E knockout (ApoE -/- ) and wild type (WT) mice were altered during atherosclerosis. Increased stiffness of ApoE -/- VSMCs correlated with a greater degree of stress fiber alignment as evidenced by atomic force microscopy (AFM)-generated force maps and stress fiber topography images. On type-1 collagen (COL1)-coated polyacrylamide (PA) gels of varying stiffness, WT VSMCs had higher adhesion forces to N-Cadherin (N-Cad) and COL1. ApoE -/- VSMC stiffness was significantly greater than WT cells with increased cell stiffness with increasing substrate stiffness for both ApoE -/- and WT VSMCs . In addition, ApoE -/- VSMCs showed an enhanced migration capability on COL1-coated substrates and a general decreasing trend in migration capacity with increasing substrate stiffness, correlating with the lower adhesion forces as compared to WT VSMCs. Altogether, these results demonstrate the potential contribution of the alteration in VSMC mechanics in the development of atherosclerosis.more » « less
- 
            The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-hour periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.more » « less
- 
            null (Ed.)Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases; however, the role of nicotine in the pathogenesis of these diseases is incompletely understood. The purpose of this study was to examine the effects of chronic nicotine inhalation on the development of cardiovascular and pulmonary disease with a focus on blood pressure and cardiac remodeling. Male C57BL6/J mice were exposed to air (control) or nicotine vapor (daily, 12 hour on/12 hour off) for 8 weeks. Systemic blood pressure was recorded weekly by radio-telemetry, and cardiac remodeling was monitored by echocardiography. At the end of the 8 weeks, mice were subjected to right heart catheterization to measure right ventricular systolic pressure. Nicotine-exposed mice exhibited elevated systemic blood pressure from weeks 1 to 3, which then returned to baseline from weeks 4 to 8, indicating development of tolerance to nicotine. At 8 weeks, significantly increased right ventricular systolic pressure was detected in nicotine-exposed mice compared with the air controls. Echocardiography showed that 8-week nicotine inhalation resulted in right ventricular (RV) hypertrophy with increased RV free wall thickness and a trend of increase in RV internal diameter. In contrast, there were no significant structural or functional changes in the left ventricle following nicotine exposure. Mechanistically, we observed increased expression of angiotensin-converting enzyme and enhanced activation of mitogen-activated protein kinase pathways in the RV but not in the left ventricle. We conclude that chronic nicotine inhalation alters both systemic and pulmonary blood pressure with the latter accompanied by RV remodeling, possibly leading to progressive and persistent pulmonary hypertension.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    