Nearly, all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition and give a complete theory of the viscosity in terms of a universal crossover scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find experimentally that for two different systems—cornstarch in glycerol and silica spheres in glycerol—the viscosity can be collapsed onto a single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes due to a crossover between frictionless isotropic jamming and frictional shear jamming, with different critical exponents. The material-specific behavior due to the microscale particle interactions is incorporated into a scaling variable governing the proximity to shear jamming, that depends on both stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium critical phenomena to elucidate fundamental physical aspects of the shear thickening transition.
more »
« less
Theory of anisotropic superfluid 4 He counterflow turbulence
We develop a theory of strong anisotropy of the energy spectra in the thermally driven turbulent counterflow of superfluid 4 He. The key ingredients of the theory are the three-dimensional differential closure for the vector of the energy flux and the anisotropy of the mutual friction force. We suggest an approximate analytic solution of the resulting energy-rate equation, which is fully supported by our numerical solution. The two-dimensional energy spectrum is strongly confined in the direction of the counterflow velocity. In agreement with the experiments, the energy spectra in the direction orthogonal to the counterflow exhibit two scaling ranges: a near-classical non-universal cascade dominated range and a universal critical regime at large wavenumbers. The theory predicts the dependence of various details of the spectra and the transition to the universal critical regime on the flow parameters. This article is part of the theme issue ‘Scaling the turbulence edifice (part 2)’.
more »
« less
- Award ID(s):
- 2009418
- PAR ID:
- 10411233
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 380
- Issue:
- 2219
- ISSN:
- 1364-503X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While the properties of standard (single-component) superfluids are well understood, principal differences arise in a special type of multicomponent systems—the so-called Borromean supercounterfluids—in which (i) supertransport is possible only in the counterflow regime and (ii) there are three or more counterflowing components. Borromean supercounterfluids's correlation and topological properties distinguish them from their single- and two-component counterparts. The component-symmetric case characterized by a distinctively different universality class of the supercounterfluid-to-normal phase transition is especially interesting. Using the recently introduced concept of compact-gauge invariance as the guiding principle, we develop the finite-temperature description of Borromean supercounterfluids in terms of an asymptotically exact long-wave effective action. We formulate and study Borromean and loop statistical models, capturing the universal long-range properties and allowing us to perform efficient worm algorithm simulations. Numeric results demonstrate perfect agreement with analytic predictions. Particularly instructive is the two-dimensional case, where the Borromean nature of the system is strongly manifested while allowing for an asymptotically exact analytic description.more » « less
-
We present a detailed analysis of the anomalous carbocations: C 2 H 5 + and C 3 H 3 + . This work involves (a) probing electronic structural properties, (b) ab initio dynamics simulations over a range of internal energies, (c) analysis of reduced dimensional potential surfaces directed along selected conformational transition pathways, (d) dynamically averaged vibrational spectra computed from ab initio dynamics trajectories, and (e) two-dimensional time–frequency analysis to probe conformational dynamics. Key findings are as follows: (i) as noted in our previous study on C 2 H 3 + , it appears that these non-classical carbocations are stabilized by delocalized nuclear frameworks and “proton shuttles”. We analyze this nuclear delocalization and find critical parallels between conformational changes in C 2 H 3 + , C 2 H 5 + , and C 3 H 3 + . (ii) The vibrational signatures of C 2 H 5 + are dominated by the “bridge-proton” conformation, but also show critical contributions from the “classical” configuration, which is a transition state at almost all levels of theory. This result is further substantiated through two-dimensional time–frequency analysis and is at odds with earlier explanations of the experimental spectra, where frequencies close to the classical region were thought to arise from an impurity. While this is still possible, our results here indicate an additional (perhaps more likely) explanation that involves the “classical” isomer. (iii) Finally, in the case of C 3 H 3 + our explanation of the experimental result includes the presence of multiple, namely, “cyclic”, “straight”, and propargyl, configurations. Proton shuttles and nuclear delocalization, reminiscent of those seen in the case of C 2 H 3 + , were seen all through and have a critical role in all our observations.more » « less
-
Abstract Stratification can cause turbulence spectra to deviate from Kolmogorov's isotropicpower law scaling in the universal equilibrium range at high Reynolds numbers. However, a consensus has not been reached with regard to the exact shape of the spectra. Here we propose a shape of the turbulent kinetic energy and temperature spectra in horizontal wavenumber for the equilibrium range that consists of three regimes at small Froude number: the buoyancy subrange, a transition region, and the isotropic inertial subrange through dimensional analysis and substantial revision of previous theoretical approximation. These spectral regimes are confirmed by various observations in the atmospheric boundary layer. The representation of the transition region in direct numerical simulations will require large‐scale separation between the Dougherty‐Ozmidov scale and the Kolmogorov scale for strongly stratified turbulence at high Reynolds numbers, which is still challenging computationally. In addition, we suggest that the failure of Monin‐Obukhov similarity theory in the very stable atmospheric boundary layer is due to the fact that it does not consider the buoyancy scale that characterizes the transition region.more » « less
-
null (Ed.)We study bubble motion in a vertical capillary tube under an external flow. Bretherton ( J. Fluid Mech. , vol. 10, issue 2, 1961, pp. 166–188) has shown that, without external flow, a bubble can spontaneously rise when the Bond number ( $${Bo} \equiv \rho g R^2 / \gamma$$ ) is above the critical value $${Bo}_{cr}=0.842$$ , where $$\rho$$ is the liquid density, $$g$$ the gravitational acceleration, $$R$$ the tube radius and $$\gamma$$ the surface tension. It was then shown by Magnini et al. ( Phys. Rev. Fluids , vol. 4, issue 2, 2019, 023601) that the presence of an imposed liquid flow, in the same (upward) direction as buoyancy, accelerates the bubble and thickens the liquid film around it. In this work we carry out a systematic study of the bubble motion under a wide range of upward and downward external flows, focusing on the inertialess regime with Bond numbers above the critical value. We show that a rich variety of bubble dynamics occurs when an external downward flow is applied, opposing the buoyancy-driven rise of the bubble. We reveal the existence of a critical capillary number of the external downward flow ( $${Ca}_l \equiv \mu U_l/\gamma$$ , where $$\mu$$ is the fluid viscosity and $$U_l$$ is the mean liquid speed) at which the bubble arrests and changes its translational direction. Depending on the relative direction of gravity and the external flow, the thickness of the film separating the bubble surface and the tube inner wall follows two distinct solution branches. The results from theory, experiments and numerical simulations confirm the existence of the two solution branches and reveal that the two branches overlap over a finite range of $${Ca}_l$$ , thus suggesting non-unique, history-dependent solutions for the steady-state film thickness under the same external flow conditions. Furthermore, inertialess symmetry-breaking shape profiles at steady state are found as the bubble transits near the tipping points of the solution branches, which are shown in both experiments and three-dimensional numerical simulations.more » « less
An official website of the United States government

