skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A community-developed extension to Darwin Core for reporting the chronometric age of specimens
Darwin Core, the data standard used for sharing modern biodiversity and paleodiversity occurrence records, has previously lacked proper mechanisms for reporting what is known about the estimated age range of specimens from deep time. This has led to data providers putting these data in fields where they cannot easily be found by users, which impedes the reuse and improvement of these data by other researchers. Here we describe the development of the Chronometric Age Extension to Darwin Core, a ratified, community-developed extension that enables the reporting of ages of specimens from deeper time and the evidence supporting these estimates. The extension standardizes reporting about the methods or assays used to determine an age and other critical information like uncertainty. It gives data providers flexibility about the level of detail reported, focusing on the minimum information needed for reuse while still allowing for significant detail if providers have it. Providing a standardized format for reporting these data will make them easier to find and search and enable researchers to pinpoint specimens of interest for data improvement or accumulate more data for broad temporal studies. The Chronometric Age Extension was also the first community-managed vocabulary to undergo the new Biodiversity Informatics Standards (TDWG) review and ratification process, thus providing a blueprint for future Darwin Core extension development.  more » « less
Award ID(s):
1655720 1929448
PAR ID:
10411244
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Haldorai, Anandakumar
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
9
ISSN:
1932-6203
Page Range / eLocation ID:
e0261044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Leal, JH; Bieler, R (Ed.)
    Among biocollections, mollusks are a particularly powerful resource for a wide range of studies, including biogeography, conservation, ecology, environmental monitoring, evolutionary biology, and systematics. U.S. mollusk collections are housed in stand-alone natural history museums, at universities, and in a variety of governmental and non-governmental institutions. Differing in their histories, specializations, and uses, they share common needs for long-term development, and collectively contribute to biodiversity knowledge at regional, national, and global scales. Commitment by dedicated staff, collectors, and volunteers, institutional investments, philanthropy, and governmental funding have built and maintained these collections and their support infrastructure. Efforts by the North American malacological collection community since the early 1970s led to coordination in database design but left the data isolated in individual institutions. Collection digitization developed through a combination of individual/institutional initiatives and federally supported projects funded by the National Science Foundation (NSF) and the Institute of Museum and Library Services (IMLS). Advances in digital technology enabled the shift toward nationally and globally unified collections. Networking and collaboration were greatly accelerated by NSF’s Advancing Digitization of Biodiversity Collections (ADBC) program, which created a central coordinating organization (iDigBio) and funded Thematic Collections Network (TCN) projects. One such TCN was developed to mobilize nearly 90% of the known U.S. museum-collections-based data of the U.S. Atlantic and Gulf coasts (Mobilizing Millions of Marine Mollusks of the Eastern Seaboard—ESB). The project, involving 16 museum collections (plus the Smithsonian Institution as federal partner), combines data from approximately 4.5 million specimens collected from the ESB region and makes them available to the TCN portal InvertEBase and other aggregators such as iDigBio and GBIF. In addition to fostering community and expanding the corpus of available digitized mollusk records through new data entry and georeferencing (GEOLocate, CoGe) and standardizing taxonomy, the project drove key innovations for the invertebrate collections community. For instance, it worked with the Biodiversity Information Standards (TDWG) group to create a new Darwin Core standard term, “Vitality”, expanded GEOLocate to support complex geospatial types, integrated global elevation and bathymetric datasets directly into georeferencing workflow, and developed various education and outreach public outreach products. Synthesizing from the 15 following articles with individual histories of ESB-participating mollusk collections, several topics are discussed—such as what defines a “good” mollusk collection in the digital age and the importance of federal support for this national resource. 
    more » « less
  2. Among biocollections, mollusks are a particularly powerful resource for a wide range of studies, including biogeography, conservation, ecology, environmental monitoring, evolutionary biology, and systematics. U.S. mollusk collections are housed in stand-alone natural history museums, at universities, and in a variety of governmental and non-governmental institutions. Differing in their histories, specializations, and uses, they share common needs for long-term development, and collectively contribute to biodiversity knowledge at regional, national, and global scales. Commitment by dedicated staff, collectors, and volunteers, institutional investments, philanthropy, and governmental funding have built and maintained these collections and their support infrastructure. Efforts by the North American malacological collection community since the early 1970s led to coordination in database design but left the data isolated in individual institutions. Collection digitization developed through a combination of individual/institutional initiatives and federally supported projects funded by the National Science Foundation (NSF) and the Institute of Museum and Library Services (IMLS). Advances in digital technology enabled the shift toward nationally and globally unified collections. Networking and collaboration were greatly accelerated by NSF’s Advancing Digitization of Biodiversity Collections (ADBC) program, which created a central coordinating organization (iDigBio) and funded Thematic Collections Network (TCN) projects. One such TCN was developed to mobilize nearly 90% of the known U.S. museum-collections-based data of the U.S. Atlantic and Gulf coasts (Mobilizing Millions of Marine Mollusks of the Eastern Seaboard—ESB). The project, involving 16 museum collections (plus the Smithsonian Institution as federal partner), combines data from approximately 4.5 million specimens collected from the ESB region and makes them available to the TCN portal InvertEBase and other aggregators such as iDigBio and GBIF. In addition to fostering community and expanding the corpus of available digitized mollusk records through new data entry and georeferencing (GEOLocate, CoGe) and standardizing taxonomy, the project drove key innovations for the invertebrate collections community. For instance, it worked with the Biodiversity Information Standards (TDWG) group to create a new Darwin Core standard term, “Vitality”, expanded GEOLocate to support complex geospatial types, integrated global elevation and bathymetric datasets directly into georeferencing workflow, and developed various education and outreach public outreach products. Synthesizing from the 15 following articles with individual histories of ESB-participating mollusk collections, several topics are discussed—such as what defines a “good” mollusk collection in the digital age and the importance of federal support for this national resource. 
    more » « less
  3. In 2017 NSF funded “oVert (openVertebrate): Open Exploration of Vertebrate Diversity in 3D,” which is the first Thematic Collections Network devoted entirely to vertebrate morphological specimens. The primary goal of oVert is to generate and serve high-resolution digital three-dimensional data for internal anatomy across vertebrate diversity. oVert will CT-scan >20,000 fluid-preserved specimens representing >80% of the living genera of vertebrates, providing broad coverage for exploration and research on all major groups of vertebrates. Contrast-enhanced scans will be generated to reveal soft tissues and organs for a majority of the living vertebrate families. This collection of digital imagery and three-dimensional volumes will be open for exploration, download, and use. These new media will provide unprecedented global access to valuable morphological data of specimens in US collections.oVert is developing best practices and guidelines for high-throughput CT-scanning, including efficient workflows, preferred resolutions, and archival formats that optimize the variety of downstream applications. Using the Integrated Digitized Biocollections (iDigBio) API, we have developed a workflow where people uploading media files to MorphoSource can search for and import metadata for specimens directly from iDigBio. Via a Rich Site Summary (RSS) feed from MorphoSource, Audubon Core data describing media files for a given scientific collection can be retrieved and integrated into institutional IPT and databases. Such data migration of large files requires attention to detail and the development of data workflows that ensure correct specimen mapping at all steps. The RSS feed from MorphoSource will also consolidate usage information for media files from specimens in each scientific collection for reporting. Additional goals of the project are to provide information vital to the creation of collection best practices for imaging permissions/copyright. A status report and update on best practices will be presented. 
    more » « less
  4. ABSTRACT Community or volunteer participation in research has the potential to significantly help mobilize the wealth of biodiversity and functional ecological data housed in natural history collections. Many such projects recruit community scientists to transcribe specimen label data from images; a next step is to task community scientists with conducting straightforward morphological measurements (e.g., body size) from specimen images. We investigated whether community science could be an effective approach to generating significant body size datasets from specimen images generated by museum digitization initiatives. Using the community science platform Notes from Nature, we engaged community scientists in a specimen measurement task to estimate body size (i.e., intertegular distance) from images of bee specimens. Community scientists showed high engagement and completion of this task, with each user measuring 43.6 specimens on average and self‐reporting successful measurement of 98.0% of the images. Community scientist measurements were significantly larger than measurements conducted by trained researchers, though the average measurement error was only 2.3%. These results suggest that community science participation could be an effective approach for bee body size measurement, for descriptive studies or for research questions where this degree of expected error is deemed acceptable. For larger‐bodied organisms (e.g., vertebrates), where modest measurement errors represent a smaller proportion of body size, community science approaches may be particularly effective. Methods we present here may serve as a blueprint for future projects aimed at engaging the public in biodiversity and collections‐based research efforts. 
    more » « less
  5. Thanks to substantial support for biodiversity data mobilization in recent decades, billions of occurrence records are openly available, documenting life on Earth and enabling timely research, awareness raising, and policy-making. Initiatives across local to global scales have been separately funded to serve different, yet often overlapping audiences of data users, and have developed a variety of platforms and infrastructures to meet the needs of these audiences. The independent progress of biodiversity data providers has led to innovations as well as challenges for the community at large as we move towards connecting and linking a diversity of information from disparate sources as Digital Extended Specimens (DES). Recognizing a need for deeper and more frequent opportunities for communication and collaboration across the globe, an ad-hoc group of representatives of various international, national, and regional organizations have been meeting virtually since 2020 to provide a forum for updates, announcements, and shared progress. This group is provisionally named International Partners for the Digital Extended Specimen (IPDES), and is guided by these four concepts: Biodiversity, Connection, Knowledge and Agency. Participants in IPDES include representatives of the Global Biodiversity Information Facility (GBIF), Integrated Digitized Biocollections (iDigBio), American Institute of Biological Sciences (AIBS), Biodiversity Collections Network (BCoN), Natural Science Collections Alliance (NSCA), Distributed System of Scientific Collections (DiSSCo), Atlas of Living Australia (ALA), Biodiversity Information Standards (TDWG), Society for the Preservation of Natural History Collections (SPNHC), National Specimen Information Infrastructure of China (NSII), and South African National Biodiversity Institute (SANBI), as well as individuals involved with biodiversity informatics initiatives, natural science collections, museums, herbaria, and universities. Our global partners group strives to increase representation from around the globe as we aim to enable research that contributes to novel discoveries and addresses the societal challenges leading to the biodiversity crisis. Our overarching mission is to expand on the community-driven successes to connect biodiversity data and knowledge through coordination of a globally integrated network of stakeholders to enable an extensible technical and social infrastructure of data, tools, and working practices in support of our vision. The main work of our group thus far includes publishing a paper on the Digital Extended Specimen (Hardisty et al. 2022), organizing and hosting an array of activities at conferences, and asynchronous online work and forum-based exchanges. We aim to advance discussion on topics of broad interest to our community such as social and technical capacity building, broadening participation, expanding social and data networks, improving data models and building a backbone for the DES, and identifying international funding solutions. This presentation will highlight some of these activities and detail progress towards a roadmap for the development of the human network and technical infrastructure necessary to support the DES. It provides an opportunity for feedback from and engagement by stakeholder communities such as TDWG and other initiatives with a focus on data standards and biodiversity informatics, as we solidify our plans for the future in support of integrated and interconnected biodiversity data and credit for those doing the work. 
    more » « less