skip to main content


Title: Massive MIMO Channel Estimation via Compressed and Quantized Feedback
This paper focuses on downlink channel state information (CSI) acquisition. A frequency division duplex (FDD) of massive MIMO system is considered. In such systems, the base station (BS) obtains the downlink CSI from the mobile users' feedback. A key consideration is to reduce the feedback overhead while ensuring that the BS accurately recovers the downlink CSI. Existing approaches often resort to dictionary-based or tensor/matrix decomposition techniques, which either exhibit unsatisfactory accuracy or induce heavy computational load at the mobile end. To circumvent these challenges, this work formulates the limited channel feedback problem as a quantized and compressed matrix recovery problem. The formulation presents a computationally challenging maximum likelihood estimation (MLE) problem. An ADMM algorithm leveraging existing harmonic retrieval tools is proposed to effectively tackle the optimization problem. Simulations show that the proposed method attains promising channel estimation accuracy, using a much smaller amount of feedback bits relative to existing methods.  more » « less
Award ID(s):
2003082
NSF-PAR ID:
10411345
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 56th Asilomar Conference on Signals, Systems, and Computers
Page Range / eLocation ID:
1016 to 1020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Massive MIMO systems can achieve high spectrum and energy efficiency in downlink (DL) based on accurate estimate of channel state information (CSI). Existing works have developed learning-based DL CSI estimation that lowers uplink feedback overhead. One often overlooked problem is the limited number of DL pilots available for CSI estimation. One proposed solution leverages temporal CSI coherence by utilizing past CSI estimates and only sending CSI-reference symbols (CSIRS) for partial arrays to preserve CSI recovery performance. Exploiting CSI correlations, FDD channel reciprocity is helpful to base stations with direct access to uplink CSI. In this work, we propose a new learning-based feedback architecture and a reconfigurable CSI-RS placement scheme to reduce DL CSI training overhead and to improve encoding efficiency of CSI feedback. Our results demonstrate superior performance in both indoor and outdoor scenarios by the proposed framework for CSI recovery at substantial reduction of computation power and storage requirements at UEs. 
    more » « less
  2. Wireless links using massive MIMO transceivers are vital for next generation wireless communications networks. Precoding in Massive MIMO transmission requires accurate downlink channel state information (CSI). Many recent works have effectively applied deep learning (DL) to jointly train UE-side compression networks for delay domain CSI and a BS-side decoding scheme. Vitally, these works assume that the full delay domain CSI is available at the UE, but in reality, the UE must estimate the delay domain based on a limited number of frequency domain pilots. In this work, we propose a linear pilot-to-delay estimator (P2DE) that acquires the truncated delay CSI via sparse frequency pilots. We show the accuracy of the P2DE under frequency downsampling, and we demonstrate the P2DE’s efficacy when utilized with existing CSI estimation networks. Additionally, we propose to use trainable compressed sensing (CS) networks in a differential encoding network for time-varying CSI estimation, and we propose a new network, MarkovNet-ISTA-ENet (MN-IE), which combines a CS network for initial CSI estimation and multiple autoencoders to estimate the error terms. We demonstrate that MN-IE has better asymptotic performance than networks comprised of only one type of network. 
    more » « less
  3. In this paper, we propose a robust analog-only beamforming scheme for the downlink multi-user systems, which not only suppresses the interference and enhances the beamforming gain, but also provides robustness against imperfect channel state information (CSI). We strike a balance between the average beamforming gain and the inter-user interference by formulating a multi-objective problem. A probabilistic objective of leakage interference power is formulated to alleviate the effects of the channel estimation and feedback quantization errors. To solve the problem, we first use the sum-weighted method to transform the multi-objective problem into a single-objective problem. Then, we use the semi-definite programing technique to make the constantmagnitude constraints of the analog beamforming tractable. Simulation results show that our proposed robust beamformer can provide up to 120% improvement in the sum-rate compared to the beam selection method. 
    more » « less
  4. In a time-division duplex (TDD) multiple antenna system the channel state information (CSI) can be estimated using reverse training. In multicell multiuser massive MIMO systems, pilot contamination degrades CSI estimation performance and adversely affects massive MIMO system performance. In this paper we consider a subspace-based semi-blind approach where we have training data as well as information bearing data from various users (both in-cell and neighboring cells) at the base station (BS). Existing subspace approaches assume that the interfering users from neighboring cells are always at distinctly lower power levels at the BS compared to the in-cell users. In this paper we do not make any such assumption. Unlike existing approaches, the BS estimates the channels of all users: in-cell and significant neighboring cell users, i.e., ones with comparable power levels at the BS. We exploit both subspace method using correlation as well as blind source separation using higher-order statistics. The proposed approach is illustrated via simulation examples. 
    more » « less
  5. In this work, we develop a two time-scale deep learning approach for beamforming and phase shift (BF-PS) design in time-varying RIS-aided networks. In contrast to most existing works that assume perfect CSI for BF-PS design, we take into account the cost of channel estimation and utilize Long Short-Term Memory (LSTM) networks to design BF-PS from limited samples of estimated channel CSI. An LSTM channel extrapolator is designed first to generate high resolution estimates of the cascaded BS-RIS-user channel from sampled signals acquired at a slow time scale. Subsequently, the outputs of the channel extrapolator are fed into an LSTM-based two stage neural network for the joint design of BF-PS at a fast time scale of per coherence time. To address the critical issue that training overhead increases linearly with the number of RIS elements, we consider various pilot structures and sampling patterns in time and space to evaluate the efficiency and sum-rate performance of the proposed two time-scale design. Our results show that the proposed two time-scale design can achieve good spectral efficiency when taking into account the pilot overhead required for training. The proposed design also outperforms a direct BF-PS design that does not employ a channel extrapolator. These demonstrate the feasibility of applying RIS in time-varying channels with reasonable pilot overhead. 
    more » « less