skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sidewall Electrical Damage in β-Ga 2 O 3 Rectifiers Exposed to Ga + Focused Ion Beams
The energy and beam current dependence of Ga+focused ion beam milling damage on the sidewall of vertical rectifiers fabricated on n-type Ga2O3was investigated with 5–30 kV ions and beam currents from 1.3–20 nA. The sidewall damage was introduced by etching a mesa along one edge of existing Ga2O3rectifiers. We employed on-state resistance, forward and reverse leakage current, Schottky barrier height, and diode ideality factor from the vertical rectifiers as potential measures of the extent of the ion-induced sidewall damage. Rectifiers of different diameters were exposed to the ion beams and the “zero-area” parameters extracted by extrapolating to zero area and normalizing for milling depth. Forward currents degraded with exposure to any of our beam conductions, while reverse current was unaffected. On-state resistance was found to be most sensitive of the device parameters to Ga+beam energy and current. Beam current was the most important parameter in creating sidewall damage. Use of subsequent lower beam energies and currents after an initial 30 kV mill sequence was able to reduce residual damage effects but not to the point of initial lower beam current exposures.  more » « less
Award ID(s):
1856662
PAR ID:
10411394
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
ECS Journal of Solid State Science and Technology
Volume:
12
Issue:
5
ISSN:
2162-8769
Page Range / eLocation ID:
Article No. 055003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Focused Ga + ion milling of lightly Si-doped, n-type Ga 2 O 3 was performed with 2–30 kV ions at normal incidence and beam currents that were a function of beam voltage, 65 nA for 30 kV, 26 nA for 10 kV, 13 nA for 5 kV, and 7.1 nA for 2 kV, to keep the milling depth constant at 100 nm. Approximate milling rates were 15, 6, 2.75, and 1.5  μm 3 /s for 30, 10, 5, and 2 kV, respectively. The electrical effects of the ion damage were characterized by Schottky barrier height and diode ideality factor on vertical rectifier structures comprising 10  μm epitaxial n-Ga 2 O 3 on n + Ga 2 O 3 substrates, while the structural damage was imaged by transmission electron microscopy. The reverse bias leakage was largely unaffected even by milling at 30 kV beam energy, while the forward current-voltage characteristics showed significant deterioration at 5 kV, with an increase in the ideality factor from 1.25 to 2.25. The I–V characteristics no longer showed rectification for the 30 kV condition. Subsequent annealing up to 400 °C produced substantial recovery of the I–V characteristics for all beam energies and was sufficient to restore the initial ideality factor completely for beam energies up to 5 kV. Even the 30 kV-exposed rectifiers showed a recovery of the ideality factor to 1.8. The surface morphology of the ion-milled Ga 2 O 3 was smooth even at 30 kV ion energy, with no evidence for preferential sputtering of the oxygen. The surface region was not amorphized by extended ion milling (35 min) at 5 kV with the samples held at 25 °C, as determined by electron diffraction patterns, and significant recovery of the lattice order was observed after annealing at 400 °C. 
    more » « less
  2. The switching performance of unpackaged vertical geometry NiO/ β -Ga 2 O 3 rectifiers with a reverse breakdown voltage of 1.76 kV (0.1 cm diameter, 7.85 × 10 −3 cm 2 area) and an absolute forward current of 1.9 A fabricated on 20 μ m thick epitaxial β -Ga 2 O 3 drift layers and a double layer of NiO to optimize breakdown and contact resistance was measured with an inductive load test circuit. The Baliga figure-of-merit of the devices was 261 MW.cm −2 , with differential on-state resistance of 11.86 mΩ.cm 2 . The recovery characteristics for these rectifiers switching from forward current of 1 A to reverse off-state voltage of −550 V showed a measurement-parasitic-limited recovery time (t rr ) of 101 ns, with a peak current value of 1.4 A for switching from 640 V. The reverse recovery time was limited by extrinsic parasitic and thus does not represent the intrinsic device characteristics. There was no significant dependence of t rr on switching voltage or forward current. 
    more » « less
  3. Neutrons generated through charge-exchange9Be (p; ni)9Be reactions, with energies ranging from 0–33 MeV and an average energy of ∼9.8 MeV were used to irradiate conventional Schottky Ga2O3rectifiers and NiO/Ga2O3p-n heterojunction rectifiers to fluences of 1.1–2.2 × 1014cm−2. The breakdown voltage was improved after irradiation for the Schottky rectifiers but was highly degraded for their NiO/Ga2O3counterparts. This may be a result of extended defect zones within the NiO. After irradiation, the switching characteristics were degraded and irradiated samples of both types could not survive switching above 0.7 A or 400 V, whereas reference samples were robust to 1 A and 1 kV. The carrier removal rate in both types of devices was ∼45 cm−1. The forward currents and on-state resistances were only slightly degraded by neutron irradiation. 
    more » « less
  4. Abstract 17 MeV proton irradiation at fluences from 3–7 × 1013cm−2of vertical geometry NiO/β-Ga2O3heterojunction rectifiers produced carrier removal rates in the range 120–150 cm−1in the drift region. The forward current density decreased by up to 2 orders of magnitude for the highest fluence, while the reverse leakage current increased by a factor of ∼20. Low-temperature annealing methods are of interest for mitigating radiation damage in such devices where thermal annealing is not feasible at the temperatures needed to remove defects. While thermal annealing has previously been shown to produce a limited recovery of the damage under these conditions, athermal annealing by minority carrier injection from NiO into the Ga2O3has not previously been attempted. Forward bias annealing produced an increase in forward current and a partial recovery of the proton-induced damage. Since the minority carrier diffusion length is 150–200 nm in proton irradiated Ga2O3, recombination-enhanced annealing of point defects cannot be the mechanism for this recovery, and we suggest that electron wind force annealing occurs. 
    more » « less
  5. NiO/β-(Al x Ga 1− x ) 2 O 3 /Ga 2 O 3 heterojunction lateral geometry rectifiers with diameter 50–100  μm exhibited maximum reverse breakdown voltages >7 kV, showing the advantage of increasing the bandgap using the β-(Al x Ga 1− x ) 2 O 3 alloy. This Si-doped alloy layer was grown by metal organic chemical vapor deposition with an Al composition of ∼21%. On-state resistances were in the range of 50–2180 Ω cm 2 , leading to power figures-of-merit up to 0.72 MW cm −2 . The forward turn-on voltage was in the range of 2.3–2.5 V, with maximum on/off ratios >700 when switching from 5 V forward to reverse biases up to −100 V. Transmission line measurements showed the specific contact resistance was 0.12 Ω cm 2 . The breakdown voltage is among the highest reported for any lateral geometry Ga 2 O 3 -based rectifier. 
    more » « less