skip to main content


Title: MicroLED light source for optical sectioning structured illumination microscopy

Optical sectioning structured illumination microscopy (OS-SIM) provides optical sectioning capability in wide-field microscopy. The required illumination patterns have traditionally been generated using spatial light modulators (SLM), laser interference patterns, or digital micromirror devices (DMDs) which are too complex to implement in miniscope systems. MicroLEDs have emerged as an alternative light source for patterned illumination due to their extreme brightness capability and small emitter sizes. This paper presents a directly addressable striped microLED microdisplay with 100 rows on a flexible cable (70 cm long) for use as an OS-SIM light source in a benchtop setup. The overall design of the microdisplay is described in detail with luminance-current-voltage characterization. OS-SIM implementation with a benchtop setup shows the optical sectioning capability of the system by imaging within a 500 µm thick fixed brain slice from a transgenic mouse where oligodendrocytes are labeled with a green fluorescent protein (GFP). Results show improved contrast in reconstructed optically sectioned images of 86.92% (OS-SIM) compared with 44.31% (pseudo-widefield). MicroLED based OS-SIM therefore offers a new capability for deep tissue widefield imaging.

 
more » « less
Award ID(s):
1926747
NSF-PAR ID:
10411418
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
10
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 16709
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have designed and implemented an approach for three-dimensional (3D) structured illumination (SI) microscopy (SIM) based on a quasi-monochromatic extended source illuminating a Wollaston prism to improve robustness, light efficiency and flexibility over our previous design. We show through analytical and experimental verification of the presented theoretical framework for our proposed tunable structured illumination microscopy (TSIM) system, that a simple and accurate determination of the axial modulation of the SI pattern is achieved, enabling a realistic characterization of the system’s effective optical transfer function (OTF). System performance as a function of the extended source size is investigated with simulations. Results from a comparative performance analysis of the proposed TSIM system and traditional SIM systems show some advantages over the traditional two-wave and three-wave interference SIM systems. We show that by controlling the source size and thereby the axial modulation of the 3D SI pattern, the TSIM scheme offers increased OTF compact support and improved optical sectioning capability, quantified by the integrated intensity, under certain conditions, which may be desirable when imaging optically thick samples. The additional tunability of the 3D SI pattern, provides a unique opportunity for OTF engineering in our TSIM system.

     
    more » « less
  2. Background Structured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high-resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution). Findings Five complete, freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open-source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods and with newer Bayesian restoration approaches that we are developing. Conclusions Various methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments are not typically published. Publically available, high-quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data were processed with SIMToolbox, an open-source and freely available software solution for SIM. 
    more » « less
  3. Summary Lay Description

    Structured‐illumination microscopy (SIM) is a high‐resolution light microscopy technique that allows imaging of fluorescence at a resolution about twice the classical diffraction limit. There are various ways that the illumination can be structured, but it is not obvious how the choice of illumination pattern affects the final image quality, especially in view of the noise. We present a detailed performance analysis considering two illumination techniques: sequential illumination with line‐gratings that are shifted and rotated during image acquisition and two‐dimensional (2D) illumination structures requiring only shift operations. Our analysis is based on analytical theory, supported by simulations of images considering noise. We also extend our analysis to a nonlinear variant of SIM, with which enhanced resolution can be achieved, limited only by noise. This includes nonlinear SIM based on the light‐induced switching of the fluorescent molecules between a bright and a dark state. We find sequential illumination with line‐gratings to be advantageous in ordinary (linear) SIM, whereas 2D patterns provides a slight signal‐to‐noise advantage under idealised conditions in nonlinear SIM if there is no nonswitching background.

     
    more » « less
  4. Abstract

    Mapping 3D plasma membrane topology in live cells can bring unprecedented insights into cell biology. Widefield-based super-resolution methods such as 3D-structured illumination microscopy (3D-SIM) can achieve twice the axial ( ~ 300 nm) and lateral ( ~ 100 nm) resolution of widefield microscopy in real time in live cells. However, twice-resolution enhancement cannot sufficiently visualize nanoscale fine structures of the plasma membrane. Axial interferometry methods including fluorescence light interference contrast microscopy and its derivatives (e.g., scanning angle interference microscopy) can determine nanoscale axial locations of proteins on and near the plasma membrane. Thus, by combining super-resolution lateral imaging of 2D-SIM with axial interferometry, we developed multi-angle-crossing structured illumination microscopy (MAxSIM) to generate multiple incident angles by fast, optoelectronic creation of diffraction patterns. Axial localization accuracy can be enhanced by placing cells on a bottom glass substrate, locating a custom height-controlled mirror (HCM) at a fixed axial position above the glass substrate, and optimizing the height reconstruction algorithm for noisy experimental data. The HCM also enables imaging of both the apical and basal surfaces of a cell. MAxSIM with HCM offers high-fidelity nanoscale 3D topological mapping of cell plasma membranes with near-real-time ( ~ 0.5 Hz) imaging of live cells and 3D single-molecule tracking.

     
    more » « less
  5. Spectroscopic image data has provided molecular discrimination for numerous fields including: remote sensing, food safety and biomedical imaging. Despite the various technologies for acquiring spectral data, there remains a trade-off when acquiring data. Typically, spectral imaging either requires long acquisition times to collect an image stack with high spectral specificity or acquisition times are shortened at the expense of fewer spectral bands or reduced spatial sampling. Hence, new spectral imaging microscope platforms are needed to help mitigate these limitations. Fluorescence excitation-scanning spectral imaging is one such new technology, which allows more of the emitted signal to be detected than comparable emission-scanning spectral imaging systems. Here, we have developed a new optical geometry that provides spectral illumination for use in excitation-scanning spectral imaging microscope systems. This was accomplished using a wavelength-specific LED array to acquire spectral image data. Feasibility of the LED-based spectral illuminator was evaluated through simulation and benchtop testing and assessment of imaging performance when integrated with a widefield fluorescence microscope. Ray tracing simulations (TracePro) were used to determine optimal optical component selection and geometry. Spectral imaging feasibility was evaluated using a series of 6-label fluorescent slides. The LED-based system response was compared to a previously tested thin-film tunable filter (TFTF)-based system. Spectral unmixing successfully discriminated all fluorescent components in spectral image data acquired from both the LED and TFTF systems. Therefore, the LED-based spectral illuminator provided spectral image data sets with comparable information content so as to allow identification of each fluorescent component. These results provide proof-of-principle demonstration of the ability to combine output from many discrete wavelength LED sources using a double-mirror (Cassegrain style) optical configuration that can be further modified to allow for high speed, video-rate spectral image acquisition. Real-time spectral fluorescence microscopy would allow monitoring of rapid cell signaling processes (i.e., Ca2+and other second messenger signaling) and has potential to be translated to clinical imaging platforms.

     
    more » « less