We analyze measurements of the thermal Sunyaev–Zeldovich (tSZ) effect arising in the circumgalactic medium (CGM) of
The circumgalactic medium (CGM) is often assumed to exist in or near hydrostatic equilibrium, with the regulation of accretion and the effects of feedback treated as perturbations to a stable balance between gravity and thermal pressure. We investigate global hydrostatic equilibrium in the CGM using four highly resolved
- PAR ID:
- 10411426
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 948
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 43
- Size(s):
- Article No. 43
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract L * galaxies, reported by J. N. Bregman et al. (B+22) and S. Das et al. (D+23). In our analysis, we use the Y. Faerman et al. CGM models, a new power-law model (PLM), and the TNG100 simulation. For a givenM vir, our PLM has four parameters: the fraction,f hCGM, of the halo baryon mass in hot CGM gas, the ratio,ϕ T , of the actual gas temperature at the virial radius to the virial temperature, and the power-law indices,a P ,thanda n for the thermal electron pressure and the hydrogen nucleon density. The B+22 Compton-y profile implies steep electron pressure slopes (a P ,th≃ 2). For isothermal conditions, the temperature is at least 1.1 × 106K, with a hot CGM gas mass of up to 3.5 × 1011M ⊙for a virial mass of 2.75 × 1012M ⊙. However, if isothermal, the gas must be expanding out of the halos. An isentropic equation of state is favored for which hydrostatic equilibrium is possible. The B+22 and D+23 results are consistent with each other and with recent (0.5–2 keV) CGM X-ray observations of Milky Way mass systems. ForM vir≃ 3 × 1012M ⊙, the scaled Compton pressure integrals, , lie in the narrow range, 2.5 × 10−4–5.0 × 10−4kpc2, for all three sets of observations. TNG100 underpredicts the tSZ parameters by factors ∼0.5 dex for theL * galaxies, suggesting that the feedback strengths and CGM gas losses are overestimated in the simulated halos at these mass scales. -
Abstract We combine 126 new galaxy-O
vi absorber pairs from the CGM2survey with 123 pairs drawn from the literature to examine the simultaneous dependence of the column density of Ovi absorbers (N O VI) on galaxy stellar mass, star-formation rate, and impact parameter. The combined sample consists of 249 galaxy-Ovi absorber pairs coveringz = 0–0.6, with host galaxy stellar massesM *= 107.8–1011.2M ⊙and galaxy-absorber impact parametersR ⊥= 0–400 proper kiloparsecs. In this work, we focus on the variation ofN O VIwith galaxy mass and impact parameter among the star-forming galaxies in the sample. We find that the averageN O VIwithin one virial radius of a star-forming galaxy is greatest for star-forming galaxies withM *= 109.2–1010M ⊙. Star-forming galaxies withM *between 108and 1011.2M ⊙can explain most Ovi systems with column densities greater than 1013.5cm−2. Sixty percent of the Ovi mass associated with a star-forming galaxy is found within one virial radius, and 35% is found between one and two virial radii. In general, we find that some departure from hydrostatic equilibrium in the CGM is necessary to reproduce the observed Ovi amount, galaxy mass dependence, and extent. Our measurements serve as a test set for CGM models over a broad range of host galaxy masses. -
Abstract This study addresses how the incidence rate of strong O
vi absorbers in a galaxy’s circumgalactic medium (CGM) depends on galaxy mass and, independently, on the amount of star formation in the galaxy. We use Hubble Space Telescope/Cosmic Origins Spectrograph absorption spectroscopy of quasars to measure Ovi absorption within 400 projected kpc and 300 km s−1of 52 galaxies withM *∼ 3 × 1010M ⊙. The galaxies have redshifts 0.12 <z < 0.6, stellar masses 1010.1M ⊙<M *< 1010.9M ⊙, and spectroscopic classifications as star-forming or passive. We compare the incidence rates of high column density Ovi absorption (N OVI ≥ 1014.3cm−2) near star-forming and passive galaxies in two narrow ranges of stellar mass and, separately, in a matched range of halo mass. In all three mass ranges, the Ovi covering fraction within 150 kpc is higher around star-forming galaxies than around passive galaxies with greater than 3σ -equivalent statistical significance. On average, the CGM of star-forming galaxies withM *∼ 3 × 1010M ⊙contains more Ovi than the CGM of passive galaxies with the same mass. This difference is evidence for a CGM transformation that happens together with galaxy quenching and is not driven primarily by halo mass. -
Abstract Over the next decade, the astronomical community will be commissioning multiple wide-field observatories well suited for studying stellar halos in both integrated light and resolved stars. In preparation for this, we use five high-resolution cosmological simulations of Milky Way–like galaxies from the FOGGIE suite to explore the properties and components of stellar halos. These simulations are run with high time (5 Myr) and stellar mass (1000
M ⊙) resolution to better model the properties and origins of low-density regions like stellar halos. We find that the FOGGIE stellar halos have masses, metallicity gradients, and surface brightness profiles that are consistent with observations. In agreement with other simulations, the FOGGIE stellar halos receive 30%–40% of their mass from in situ stars. However, this population is more centrally concentrated in the FOGGIE simulations and therefore does not contribute excess light to the halo outskirts. The remaining stars are accreted from ∼10–50 other galaxies, with the majority of the accreted mass originating in two to four galaxies. While the inner halo (r < 50 kpc) of each FOGGIE galaxy has a large number of contributors, the halo outskirts of three of the five galaxies are primarily made up of stars from only a few contributors. We predict that upcoming wide-field observatories, like the Nancy Grace Roman Space Telescope, will probe stellar halos around Milky Way–like galaxies out to ∼100 kpc in integrated light and will be able to distinguish the debris of dwarf galaxies with extended star formation histories from the underlying halo with resolved color–magnitude diagrams. -
null (Ed.)Abstract We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive (Mhalo ≳ 1011 M⊙), low-redshift (z ≲ 1 − 2) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos “traps” galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows “escape” and CR pressure gradients continuously accelerate this material well into the IGM in “fast” outflows, while lower-density gas at large radii is accelerated in-situ into “slow” outflows that extend to >Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to >Mpc. The CR-driven outflows are primarily cool (T ∼ 105 K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses (≲ 1011 M⊙) or higher redshifts (z ≳ 1 − 2), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena. We caution that these predictions may depend on uncertain CR transport physics.more » « less