Abstract The first infall of the LMC into the Milky Way (MW) represents a large and recent disruption to the MW circumgalactic medium (CGM). In this work, we use idealized, hydrodynamical simulations of an MW-like CGM embedded in a dark matter halo with an infalling LMC-like satellite initialized with its own CGM to understand how the encounter is shaping the global physical and kinematic properties of the MW CGM. First, we find that the LMC drives order-unity enhancements in MW CGM density, temperature, and pressure due to a shock from the supersonic CGM–CGM collision. The resulting shock front extends from the LMC to beyond ∼R200,MW, amplifying column densities, X-ray brightness, thermal Sunyaev–Zeldovich distortion, and potentially synchrotron emission from cosmic rays over large angular scales across the southern hemisphere. Second, the MW’s reflex motion relative to its outer halo induces a dipole in CGM radial velocities, withvR ± 30–50 km s−1atR > 50 kpc in the northern and southern hemispheres, respectively, consistent with measurements in the stellar halo. Finally, ram pressure strips most of the LMC’s CGM, leaving ∼108−9M⊙warm ionized gas along the past orbit of the LMC, moving at high radial and/or tangential velocities ∼50–100 kpc from the MW. Massive satellites like the LMC leave their mark on the CGM structure of their host galaxies, and signatures of such interactions may be observable in key all-sky tracers of the MW CGM and those of other massive galaxies.
more »
« less
Figuring Out Gas & Galaxies in Enzo (FOGGIE). VI. The Circumgalactic Medium of L ∗ Galaxies Is Supported in an Emergent, Nonhydrostatic Equilibrium
Abstract The circumgalactic medium (CGM) is often assumed to exist in or near hydrostatic equilibrium, with the regulation of accretion and the effects of feedback treated as perturbations to a stable balance between gravity and thermal pressure. We investigate global hydrostatic equilibrium in the CGM using four highly resolvedL*galaxies from the Figuring Out Gas & Galaxies in Enzo (FOGGIE) project. The FOGGIE simulations were specifically targeted at fine spatial and mass resolution in the CGM (Δx≲ 1 kpch−1andM≃ 200M⊙). We develop a new analysis framework that calculates the forces provided by thermal pressure gradients, turbulent pressure gradients, ram pressure gradients of large-scale radial bulk flows, centrifugal rotation, and gravity acting on the gas in the CGM. Thermal and turbulent pressure gradients vary strongly on scales of ≲5 kpc throughout the CGM. Thermal pressure gradients provide the main supporting force only beyond ∼0.25R200, or ∼50 kpc atz= 0. Within ∼0.25R200, turbulent pressure gradients and rotational support provide stronger forces than thermal pressure. More generally, we find that global equilibrium models are neither appropriate nor predictive for the small scales probed by absorption line observations of the CGM. Local conditions generally cannot be derived by assuming a global equilibrium, but an emergent global equilibrium balancing radially inward and outward forces is obtained when averaging over the nonequilibrium local conditions on large scales in space and time. Approximate hydrostatic equilibrium holds only at large distances from galaxies, even when averaging out small-scale variations.
more »
« less
- PAR ID:
- 10411426
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 948
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 43
- Size(s):
- Article No. 43
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We combine 126 new galaxy-Oviabsorber pairs from the CGM2survey with 123 pairs drawn from the literature to examine the simultaneous dependence of the column density of Oviabsorbers (NOVI) on galaxy stellar mass, star-formation rate, and impact parameter. The combined sample consists of 249 galaxy-Oviabsorber pairs coveringz= 0–0.6, with host galaxy stellar massesM*= 107.8–1011.2M⊙and galaxy-absorber impact parametersR⊥= 0–400 proper kiloparsecs. In this work, we focus on the variation ofNOVIwith galaxy mass and impact parameter among the star-forming galaxies in the sample. We find that the averageNOVIwithin one virial radius of a star-forming galaxy is greatest for star-forming galaxies withM*= 109.2–1010M⊙. Star-forming galaxies withM*between 108and 1011.2M⊙can explain most Ovisystems with column densities greater than 1013.5cm−2. Sixty percent of the Ovimass associated with a star-forming galaxy is found within one virial radius, and 35% is found between one and two virial radii. In general, we find that some departure from hydrostatic equilibrium in the CGM is necessary to reproduce the observed Oviamount, galaxy mass dependence, and extent. Our measurements serve as a test set for CGM models over a broad range of host galaxy masses.more » « less
-
null (Ed.)Abstract We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive (Mhalo ≳ 1011 M⊙), low-redshift (z ≲ 1 − 2) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos “traps” galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows “escape” and CR pressure gradients continuously accelerate this material well into the IGM in “fast” outflows, while lower-density gas at large radii is accelerated in-situ into “slow” outflows that extend to >Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to >Mpc. The CR-driven outflows are primarily cool (T ∼ 105 K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses (≲ 1011 M⊙) or higher redshifts (z ≳ 1 − 2), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena. We caution that these predictions may depend on uncertain CR transport physics.more » « less
-
ABSTRACT We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity $$\kappa \sim 3\times 10^{29}\, \mathrm{cm^2\ s^{-1}}$$ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few $${\sim}10^{4}\,$$ K), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O vi columns $${\gtrsim}10^{14.5}\, \mathrm{cm^{-2}}$$ at distances $${\gtrsim}150\, \mathrm{kpc}$$. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot ($$T\gtrsim 10^{5}\,$$K) with thermal pressure balancing gravity, collisional ionization dominates, O vi columns are lower and Ne viii higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase.more » « less
-
Abstract Dwarf galaxies are uniquely sensitive to feedback processes and known to experience substantial mass and metal loss from their disks. Here, we investigate the circumgalactic medium (CGM) of 64 isolated dwarf galaxies ( ) atz= 0 from the Marvel-ous Dwarfs and Marvelous Massive Dwarfs simulations. Our galaxies produce column densities broadly consistent with current observations. We investigate these column densities in the context of mass and metal retention rates, and CGM physical properties. We find 48% ± 11% of all baryons withinR200creside in the CGM, with ∼70% of CGM mass existing in a warm gas phase, 104.5 < T < 105.5K, that dominates beyondr/R200c ∼ 0.5. The warm and cool (104.0 < T < 104.5K) gas phases each retain 5%–10% of metals formed by the dwarf galaxy. The significant fraction of mass and metals residing in the warm CGM phase provides an interpretation for the lack ofz ∼ 0 low ion detections beyondb/R200c ∼ 0.5, as the majority of mass in this region exists in higher ions. We find a weak correlation between galaxy mass and total CGM metal retention despite the fraction of metals lost from the halo increasing from ∼10% to >40% toward lower masses. Our findings highlight the CGM (particularly its warm phase) as a key reservoir of mass and metals for dwarf galaxies across stellar masses, underscoring its importance in understanding the baryon cycle in the low-mass regime. Finally, we provide individual simulated galaxy properties and quantify the fraction of UV-observable mass to support future observational programs aimed at performing a metal budget around dwarf galaxies.more » « less
An official website of the United States government
