Attributed networks are a type of graph structured data used in many real-world scenarios. Detecting anomalies on attributed networks has a wide spectrum of applications such as spammer detection and fraud detection. Although this research area draws increasing attention in the last few years, previous works are mostly unsupervised because of expensive costs of labeling ground truth anomalies. Many recent studies have shown different types of anomalies are often mixed together on attributed networks and such invaluable human knowledge could provide complementary insights in advancing anomaly detection on attributed networks. To this end, we study the novel problem of modeling and integrating human knowledge of different anomaly types for attributed network anomaly detection. Specifically, we first model prior human knowledge through a novel data augmentation strategy. We then integrate the modeled knowledge in a Siamese graph neural network encoder through a well-designed contrastive loss. In the end, we train a decoder to reconstruct the original networks from the node representations learned by the encoder, and rank nodes according to its reconstruction error as the anomaly metric. Experiments on five real-world datasets demonstrate that the proposed framework outperforms the state-of-the-art anomaly detection algorithms.
more »
« less
Scalable Wireless Anomaly Detection with Generative-LSTMs on RF Post-Detection Metadata
Signal anomaly detection is commonly used to detect rogue or unexpected signals. It has many applications in interference mitigation, wireless security, optimized spectrum allocation, and radio coordination. Our work proposes a new method for anomaly detection on signal detection metadata using generative adversarial network output processed by a long short term memory recurrent neural network. We provide a performance analysis and comparison to baseline methods, and demonstrate that through the usage of metadata for analytics, we can provide robust detection, while also minimizing computation and bandwidth, and generalizing to numerous effects which differs from many prior works that focus on A.D. based signal processing on the raw RF sample data.
more »
« less
- Award ID(s):
- 1946493
- PAR ID:
- 10411641
- Date Published:
- Journal Name:
- 2022 IEEE Wireless Communications and Networking Conference (WCNC)
- Page Range / eLocation ID:
- 483 to 488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract Anomaly detection relies on designing a score to determine whether a particular event is uncharacteristic of a given background distribution. One way to define a score is to use autoencoders, which rely on the ability to reconstruct certain types of data (background) but not others (signals). In this paper, we study some challenges associated with variational autoencoders, such as the dependence on hyperparameters and the metric used, in the context of anomalous signal (top and W ) jets in a QCD background. We find that the hyperparameter choices strongly affect the network performance and that the optimal parameters for one signal are non-optimal for another. In exploring the networks, we uncover a connection between the latent space of a variational autoencoder trained using mean-squared-error and the optimal transport distances within the dataset. We then show that optimal transport distances to representative events in the background dataset can be used directly for anomaly detection, with performance comparable to the autoencoders. Whether using autoencoders or optimal transport distances for anomaly detection, we find that the choices that best represent the background are not necessarily best for signal identification. These challenges with unsupervised anomaly detection bolster the case for additional exploration of semi-supervised or alternative approaches.more » « less
-
null (Ed.)Overall, this document will serve as an analysis of the combination between machine learning principles and computer network analysis in their ability to detect a network anomaly, such as a network attack. The research provided in this document will highlight the key elements of network analysis and provide an overview of common network analysis techniques. Specifically, this document will highlight a study conducted by the University of Luxembourg and an attempt to recreate the study with a slightly different list of parameters against a different dataset for network anomaly detection using NetFlow data. Alongside network analysis, is the emerging field of machine learning. This document will be investigating common machine learning techniques and implement a support vector machine algorithm to detect anomaly and intrusion within the network. MatLab was an utilized machine learning tool for identifying how to coordinate network analysis data with Support Vector Machines. The resulting graphs represent tests conducted using Support vector machines in a method similar to that of the University of Luxembourg. The difference between the tests is within the metrics used for anomaly detection. The University of Luxembourg utilized the IP addresses and the volume of traffic of a specific NetFlow dataset. The resulting graphs utilize a metric based on the duration of transmitted bytes, and the ratio of the incoming and outgoing bytes during the transmission. The algorithm created and defined metrics proved to not be as efficient as planned against the NetFlow dataset. The use of the conducted tests did not provide a clear classification of an anomaly. However, many other factors contributing to network anomalies were highlighted.more » « less
-
null (Ed.)Network anomaly detection aims to find network elements (e.g., nodes, edges, subgraphs) with significantly different behaviors from the vast majority. It has a profound impact in a variety of applications ranging from finance, healthcare to social network analysis. Due to the unbearable labeling cost, existing methods are predominately developed in an unsupervised manner. Nonetheless, the anomalies they identify may turn out to be data noises or uninteresting data instances due to the lack of prior knowledge on the anomalies of interest. Hence, it is critical to investigate and develop few-shot learning for network anomaly detection. In real-world scenarios, few labeled anomalies are also easy to be accessed on similar networks from the same domain as the target network, while most of the existing works omit to leverage them and merely focus on a single network. Taking advantage of this potential, in this work, we tackle the problem of few-shot network anomaly detection by (1) proposing a new family of graph neural networks -- Graph Deviation Networks (GDN) that can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network; (2) equipping the proposed GDN with a new cross- network meta-learning algorithm to realize few-shot network anomaly detection by transferring meta-knowledge from multiple auxiliary networks. Extensive experimental evaluations demonstrate the efficacy of the proposed approach on few-shot or even one-shot network anomaly detection.more » « less
-
Ensuring fairness in anomaly detection models has received much attention recently as many anomaly detection applications involve human beings. However, existing fair anomaly detection approaches mainly focus on association-based fairness notions. In this work, we target counterfactual fairness, which is a prevalent causation-based fairness notion. The goal of counterfactually fair anomaly detection is to ensure that the detection outcome of an individual in the factual world is the same as that in the counterfactual world where the individual had belonged to a different group. To this end, we propose a counterfactually fair anomaly detection (CFAD) framework which consists of two phases, counterfactual data generation and fair anomaly detection. Experimental results on a synthetic dataset and two real datasets show that CFAD can effectively detect anomalies as well as ensure counterfactual fairness.more » « less
An official website of the United States government

