Abstract In the surfzone, breaking‐wave generated eddies and vortices transport material along the coast and offshore to the continental shelf, providing a pathway from land to the ocean. Here, surfzone vorticity is investigated with unique field observations obtained during a wide range of wave and bathymetric conditions on an Atlantic Ocean beach. Small spatial‐scale [O(10 m)] vorticity estimated with a 5 m diameter ring of 14 current meters deployed in ∼2 m water depth increased as the directional spread of the wave field increased. Large spatial‐scale [O(100 m)] vorticity calculated from remote sensing estimates of currents across the surfzone along 200 m of the shoreline increased as alongshore bathymetric variability (channels, bars, bumps, holes) increased. For all bathymetric conditions, large‐scale vorticity in the inner surfzone was more energetic than in the outer surfzone. 
                        more » 
                        « less   
                    
                            
                            Diagnosing surfzone impacts on inner-shelf flow spatial variability using realistic model experiments with and without surface gravity waves
                        
                    
    
            Abstract Rip currents are generated by surfzone wave breaking and are ejected offshore inducing inner-shelf flow spatial variability (eddies). However, surfzone effects on the inner-shelf flow spatial variability have not been studied in realistic models that include both shelf and surfzone processes. Here, these effects are diagnosed with two nearly identical twin realistic simulations of the San Diego Bight over summer to fall where one simulation includes surface gravity waves (WW) and the other that does not (NW). The simulations include tides, weak to moderate winds, internal waves, submesoscale processes, and have surfzone width L sz of 96(±41) m (≈ 1 m significant wave height). Flow spatial variability metrics, alongshore root mean square vorticity, divergence, and eddy cross-shore velocity, are analyzed in a L sz normalized cross-shore coordinate. At the surface, the metrics are consistently (> 70%) elevated in the WW run relative to NW out to 5 L sz offshore. At 4 L sz offshore, WW metrics are enhanced over the entire water column. In a fixed coordinate appropriate for eddy transport, the eddy cross-shore velocity squared correlation betweenWWand NW runs is < 0.5 out to 1.2 km offshore or 12 time-averaged L sz . The results indicate that the eddy tracer ( e.g. , larvae) transport and dispersion across the inner-shelf will be significantly different in the WW and NW runs. The WW model neglects specific surfzone vorticity generation mechanisms. Thus, these inner-shelf impacts are likely underestimated. In other regions with larger waves, impacts will extend farther offshore. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10411723
- Date Published:
- Journal Name:
- Journal of Physical Oceanography
- ISSN:
- 0022-3670
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Currents transport sediment, larvae, pollutants, and people across and along the surfzone, creating a dynamic interface between the coastal ocean and shore. Previous field studies of nearshore flows primarily have relied on relatively low spatial resolution deployments of in situ sensors, but the development of remote sensing techniques using optical imagery and naturally occurring foam as a flow tracer has allowed for high spatial resolution observations (on the order of a few meters) across the surfzone. Here, algorithms optical current meter (OCM) and particle image velocimetry (PIV) are extended from previous surfzone applications and used to estimate both cross-shore and alongshore 2-, 10-, and 60-min mean surface currents in the nearshore using imagery from both oblique and nadir viewing angles. Results are compared with in situ current meters throughout the surfzone for a wide range of incident wave heights, directions, and directional spreads. Differences between remotely sensed flows and in situ current meters are smallest for nadir viewing angles, where georectification is simplified. Comparisons of 10-min mean flow estimates from a nadir viewing angle with in situ estimates of alongshore and cross-shore currents had correlationsr2= 0.94 and 0.51 with root-mean-square differences (RMSDs) = 0.07 and 0.16 m s−1for PIV andr2= 0.88 and 0.44 with RMSDs = 0.08 and 0.22 m s−1for OCM. Differences between remotely sensed and in situ cross-shore current estimates are at least partially owing to the difference between onshore-directed mass flux on the surface and offshore-directed undertow in the mid–water column.more » « less
- 
            The variability and drivers of the cross-shelf exchanges between the Southwestern Atlantic shelf and the open ocean from 30 to 40°S are analyzed using a high-resolution ocean model reanalysis at daily resolution. The model's performance was first evaluated using altimetry data, and independent mooring and hydrographic data collected in the study area. Model transports are in overall good agreement with all other estimates. The record-mean (1993–2018) cross-shore transport is offshore, 2.09 ± 1.60 Sv. 73% of the shelf-open ocean exchange occurs in the vicinity of Brazil-Malvinas Confluence (~38°S) and 20% near 32°S. This outflow is mostly contributed by northward alongshore transport through 40°S (63%) and the remaining by southward transport through 30°S (37%). The cross-shore flow presents weak seasonal variations, with a maximum in austral summer, and high variability at subannual and weekly time scales. The latter is mainly associated with abrupt wind changes generated by synoptic atmospheric systems. Alongshore wind variations set up sea-level changes in the inner shelf which in turn drive large anomalies in the associated geostrophic alongshore flow. The difference in inner shelf sea-level anomalies at 30 and 40°S is a good indicator of cross-shelf exchange at seasonal and shorter time scales. Episodes of extreme offshore transport that reach up to 9.45 Sv and last about 2 days are driven by convergence of these alongshore flows over the shelf. Large exports of shelf waters lead to freshening of the upper open ocean as revealed by in-situ and satellite observations. In contrast, onshore extreme events drive open ocean water intrusions of up to 6.53 Sv and last <4 days. These inflows, particularly the subtropical waters from the Brazil Current, induce a substantial salinification of the outer shelf.more » « less
- 
            null (Ed.)The development of the governing equations for fluid flow in a surface-following coordinate system is essential to investigate the fluid flow near an interface deformed by propagating waves. In this paper, the governing equations of fluid flow, including conservation of mass, momentum and energy balance, are derived in an orthogonal curvilinear coordinate system relevant to surface water waves. All equations are further decomposed to extract mean, wave-induced and turbulent components. The complete transformed equations include explicit extra geometric terms. For example, turbulent stress and production terms include the effects of coordinate curvature on the structure of fluid flow. Furthermore, the governing equations of motion were further simplified by considering the flow over periodic quasi-linear surface waves wherein the wavelength of the disturbance is large compared to the wave amplitude. The quasi-linear analysis is employed to express the boundary layer equations in the orthogonal wave-following curvilinear coordinates with the corresponding decomposed equations for the mean, wave and turbulent fields. Finally, the vorticity equations are also derived in the orthogonal curvilinear coordinates in order to express the corresponding velocity–vorticity formulations. The equations developed in this paper proved to be useful in the analysis and interpretation of experimental data of fluid flow over wind-generated surface waves. Experimental results are presented in a companion paper.more » « less
- 
            Abstract Theoretical understanding of the upward vertical motion into the surface layer during coastal upwelling is often based on steady linear Ekman dynamics. In steady linear theory, the divergence of surface transport that leads to upwelling is associated with either overlap of the frictional boundary layers over the inner shelf or wind stress curl farther offshore. However, the alongshore current associated with a coastal upwelling front is associated with relative vorticity which modifies surface transport. A new nonlinear theory shows that, under spatially uniform wind forcing, the fraction of Ekman transport upwelled over the inner shelf tends to decrease with increasing slope Burger numberSas the baroclinic alongshore jet strengthens and cyclonic vorticity increases. Similar patterns are shown in a set of idealized numerical experiments. Unsteadiness in the alongshore flow, neglected in the theory, strongly influences the cross-shelf distribution of upwelling in the numerical model at locations offshore of the inner shelf and near the core of the upwelling jet. The theory and numerical modeling are extended to explore the effect of a large-scale alongshore pressure gradient force (PGF) that forms in response to alongshore variations in wind stress. At highS, a baroclinic PGF is associated with a shallow onshore return flow, but the fraction of modeled upwelling that occurs over the inner shelf is not strongly affected. The results emphasize that the strength and location of the alongshore jet strongly influence the cross-shelf distribution of coastal upwelling in the presence of stratification and a sloping bottom. Significance StatementWind-driven coastal upwelling is important for supplying nutrients to phytoplankton at the base of marine ecosystems. This study uses simple models to investigate factors that determine where upwelling of water into the surface layer occurs when wind blows along the coastline. With a larger difference in density between the surface and bottom layers, a steeply sloping seafloor, and at latitudes closer to the equator, the upwelling region shifts farther offshore because of the strength and location of faster ocean currents that flow along the coastline.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    