skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Diagnosing surfzone impacts on inner-shelf flow spatial variability using realistic model experiments with and without surface gravity waves
Abstract Rip currents are generated by surfzone wave breaking and are ejected offshore inducing inner-shelf flow spatial variability (eddies). However, surfzone effects on the inner-shelf flow spatial variability have not been studied in realistic models that include both shelf and surfzone processes. Here, these effects are diagnosed with two nearly identical twin realistic simulations of the San Diego Bight over summer to fall where one simulation includes surface gravity waves (WW) and the other that does not (NW). The simulations include tides, weak to moderate winds, internal waves, submesoscale processes, and have surfzone width L sz of 96(±41) m (≈ 1 m significant wave height). Flow spatial variability metrics, alongshore root mean square vorticity, divergence, and eddy cross-shore velocity, are analyzed in a L sz normalized cross-shore coordinate. At the surface, the metrics are consistently (> 70%) elevated in the WW run relative to NW out to 5 L sz offshore. At 4 L sz offshore, WW metrics are enhanced over the entire water column. In a fixed coordinate appropriate for eddy transport, the eddy cross-shore velocity squared correlation betweenWWand NW runs is < 0.5 out to 1.2 km offshore or 12 time-averaged L sz . The results indicate that the eddy tracer ( e.g. , larvae) transport and dispersion across the inner-shelf will be significantly different in the WW and NW runs. The WW model neglects specific surfzone vorticity generation mechanisms. Thus, these inner-shelf impacts are likely underestimated. In other regions with larger waves, impacts will extend farther offshore.  more » « less
Award ID(s):
1924005 1923941
PAR ID:
10411723
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
ISSN:
0022-3670
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Transient rip currents drive cross‐shore transport of nutrients, larvae, sediment, and other particulate matter. These currents are driven by short‐crested wave breaking, which is associated with rotational wave‐breaking forces (vorticity forcing) that generate horizontal rotational motions (eddies) at small scales. Energy from small‐scale eddies is transferred to larger‐scale eddies that interact and enhance cross‐shore exchange. Previous numerical modeling work on planar beaches has shown that cross‐shore exchange increases with increasing wave directional spread, but this relationship is not established for barred beaches, and processes connecting the wavefield to cross‐shore exchange are not well constrained. We investigate surf‐zone eddy processes using numerical simulations (FUNWAVE‐TVD) and large‐scale laboratory observations of varying offshore wave directional spreads (0 to ) and peak period (1.5–2.5 s) on an alongshore uniform barred beach. We find that mean breaking crest length decreases, while crest end density (number of crest ends in a given area) increases, with increasing directional spread. In contrast, vorticity forcing, offshore low‐frequency rotational motion, and cross‐shore exchange peak at intermediate directional spreads . Distributions of the strength of vorticity forcing per crest and across the surf zone suggest that the peak in vorticity forcing at intermediate spreads results from a combination of a larger total breaking area and relatively long crests with large forcing, despite a lower total number of crests. However, low‐frequency rotational motion within the surf zone does not peak at mid‐directional spread, instead plateauing at directional spreads greater than . Results suggest that eddy‐eddy interaction, the transformation of vorticity across the surf zone, and influence of bathymetry are fruitful topics for future work.

     
    more » « less
  2. Abstract

    Currents transport sediment, larvae, pollutants, and people across and along the surfzone, creating a dynamic interface between the coastal ocean and shore. Previous field studies of nearshore flows primarily have relied on relatively low spatial resolution deployments of in situ sensors, but the development of remote sensing techniques using optical imagery and naturally occurring foam as a flow tracer has allowed for high spatial resolution observations (on the order of a few meters) across the surfzone. Here, algorithms optical current meter (OCM) and particle image velocimetry (PIV) are extended from previous surfzone applications and used to estimate both cross-shore and alongshore 2-, 10-, and 60-min mean surface currents in the nearshore using imagery from both oblique and nadir viewing angles. Results are compared with in situ current meters throughout the surfzone for a wide range of incident wave heights, directions, and directional spreads. Differences between remotely sensed flows and in situ current meters are smallest for nadir viewing angles, where georectification is simplified. Comparisons of 10-min mean flow estimates from a nadir viewing angle with in situ estimates of alongshore and cross-shore currents had correlationsr2= 0.94 and 0.51 with root-mean-square differences (RMSDs) = 0.07 and 0.16 m s−1for PIV andr2= 0.88 and 0.44 with RMSDs = 0.08 and 0.22 m s−1for OCM. Differences between remotely sensed and in situ cross-shore current estimates are at least partially owing to the difference between onshore-directed mass flux on the surface and offshore-directed undertow in the mid–water column.

     
    more » « less
  3. The variability and drivers of the cross-shelf exchanges between the Southwestern Atlantic shelf and the open ocean from 30 to 40°S are analyzed using a high-resolution ocean model reanalysis at daily resolution. The model's performance was first evaluated using altimetry data, and independent mooring and hydrographic data collected in the study area. Model transports are in overall good agreement with all other estimates. The record-mean (1993–2018) cross-shore transport is offshore, 2.09 ± 1.60 Sv. 73% of the shelf-open ocean exchange occurs in the vicinity of Brazil-Malvinas Confluence (~38°S) and 20% near 32°S. This outflow is mostly contributed by northward alongshore transport through 40°S (63%) and the remaining by southward transport through 30°S (37%). The cross-shore flow presents weak seasonal variations, with a maximum in austral summer, and high variability at subannual and weekly time scales. The latter is mainly associated with abrupt wind changes generated by synoptic atmospheric systems. Alongshore wind variations set up sea-level changes in the inner shelf which in turn drive large anomalies in the associated geostrophic alongshore flow. The difference in inner shelf sea-level anomalies at 30 and 40°S is a good indicator of cross-shelf exchange at seasonal and shorter time scales. Episodes of extreme offshore transport that reach up to 9.45 Sv and last about 2 days are driven by convergence of these alongshore flows over the shelf. Large exports of shelf waters lead to freshening of the upper open ocean as revealed by in-situ and satellite observations. In contrast, onshore extreme events drive open ocean water intrusions of up to 6.53 Sv and last <4 days. These inflows, particularly the subtropical waters from the Brazil Current, induce a substantial salinification of the outer shelf. 
    more » « less
  4. null (Ed.)
    The development of the governing equations for fluid flow in a surface-following coordinate system is essential to investigate the fluid flow near an interface deformed by propagating waves. In this paper, the governing equations of fluid flow, including conservation of mass, momentum and energy balance, are derived in an orthogonal curvilinear coordinate system relevant to surface water waves. All equations are further decomposed to extract mean, wave-induced and turbulent components. The complete transformed equations include explicit extra geometric terms. For example, turbulent stress and production terms include the effects of coordinate curvature on the structure of fluid flow. Furthermore, the governing equations of motion were further simplified by considering the flow over periodic quasi-linear surface waves wherein the wavelength of the disturbance is large compared to the wave amplitude. The quasi-linear analysis is employed to express the boundary layer equations in the orthogonal wave-following curvilinear coordinates with the corresponding decomposed equations for the mean, wave and turbulent fields. Finally, the vorticity equations are also derived in the orthogonal curvilinear coordinates in order to express the corresponding velocity–vorticity formulations. The equations developed in this paper proved to be useful in the analysis and interpretation of experimental data of fluid flow over wind-generated surface waves. Experimental results are presented in a companion paper. 
    more » « less
  5. Abstract

    Temperature variability in the nearshore (from ≈6‐m depth to the shoreline) is influenced by many processes including wave breaking and internal waves. A nearshore heat budget resolving these processes has not been considered. A 7‐month experiment at the Scripps Institution of Oceanography Pier (shoreline to 6‐m depth) measured temperature and surface and cross‐shore heat fluxes to examine a nearshore heat budget with fine cross‐shore spatial (≈20 m) and temporal (5 day to 4 h) resolution. Winds, waves, air and water temperature, and in particular, pier end stratification varied considerably from late Fall to late Spring. The largest heat flux terms were shortwave solar radiation and baroclinic advective heat flux both varying on tidal time scales. The net heat flux is coherent and in phase with the nearshore heat content change at diurnal and semidiurnal frequencies. The binned mean heat budget has squared correlationR2=0.97 and best‐fit slope of 0.76. Including an elevated breaking wave albedo parameterization reduced the residual heat flux and improved the best‐fit slope. Baroclinic and barotropic advective heat fluxes have significant noise, and removing them from the heat budget improves the best‐fit slope when stratification is weak. However, when daily mean stratification is large, baroclinic advective heat flux dominates variability and is required to capture large (≈3 °C h−1) internal wave events. At times, large heat budget residuals highlight neglected heat budget terms, pointing to surfzone alongshore advection of temperature anomalies.

     
    more » « less