skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing the accuracy of viscoelastic characterization with AFM force–distance experiments in the time and frequency domains
Atomic Force Microscopy (AFM) force-distance (FD) experiments have emerged as an attractive alternative to traditional micro-rheology measurement techniques owing to their versatility of use in materials of a wide range of mechanical properties. Here, we show that the range of time dependent behaviour which can reliably be resolved from the typical method of FD inversion (fitting constitutive FD relations to FD data) is inherently restricted by the experimental parameters: sampling frequency, experiment length, and strain rate. Specifically, we demonstrate that violating these restrictions can result in errors in the values of the parameters of the complex modulus. In the case of complex materials, such as cells, whose behaviour is not specifically understood a priori , the physical sensibility of these parameters cannot be assessed and may lead to falsely attributing a physical phenomenon to an artifact of the violation of these restrictions. We use arguments from information theory to understand the nature of these inconsistencies as well as devise limits on the range of mechanical parameters which can be reliably obtained from FD experiments. The results further demonstrate that the nature of these restrictions depends on the domain (time or frequency) used in the inversion process, with the time domain being far more restrictive than the frequency domain. Finally, we demonstrate how to use these restrictions to better design FD experiments to target specific timescales of a material's behaviour through our analysis of a polydimethylsiloxane (PDMS) polymer sample.  more » « less
Award ID(s):
2037849
PAR ID:
10411776
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
19
Issue:
3
ISSN:
1744-683X
Page Range / eLocation ID:
451 to 467
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Biomolecular systems are dependent on a complex interplay of forces. Modern force spectroscopy techniques provide means of interrogating these forces, but they are not optimized for studies in constrained environments as they require attachment to micron-scale probes such as beads or cantilevers. Nanomechanical devices are a promising alternative, but this requires versatile designs that can be tuned to respond to a wide range of forces. We investigate the properties of a nanoscale force sensitive DNA origami device which is highly customizable in geometry, functionalization, and mechanical properties. The device, referred to as the NanoDyn, has a binary (open or closed) response to an applied force by undergoing a reversible structural transition. The transition force is tuned with minor alterations of 1 to 3 DNA oligonucleotides and spans tens of picoNewtons (pN). The DNA oligonucleotide design parameters also strongly influence the efficiency of resetting the initial state, with higher stability devices (≳10 pN) resetting more reliably during repeated force-loading cycles. Finally, we show the opening force is tunable in real time by adding a single DNA oligonucleotide. These results establish the potential of the NanoDyn as a versatile force sensor and provide fundamental insights into how design parameters modulate mechanical and dynamic properties. 
    more » « less
  2. SUMMARY Seismic attenuation (quantified by the quality factor Q) has a significant impact on the seismic waveforms, especially in the fluid-saturated rocks. This dissipative process can be phenomenologically represented by viscoelastic models. Previous seismological studies show that the Q value of Earth media exhibits a nearly frequency-independent behaviour (often referred to as constant-Q in literature) in the seismic frequency range. Such attenuation can be described by the mathematical Kjartansson constant-Q model, which lacks of a physical representation in the viscoelastic sense. Inspired by the fractal nature of the pore fluid distribution in patchy-saturated rocks, here we propose two fractal mechanical network (FMN) models, that is, a fractal tree model and a quasi-fractal ladder model, to phenomenologically represent the frequency-independent Q behaviour. As with the classic viscoelastic models, the FMN models are composed of mechanical elements (spring and dashpots) arranged in different hierarchical patterns. A particular parametrization of each model can produce the same complex modulus as in the Kjartansson model, which leads to the constant-Q. Applying the theory to several typical rock samples, we find that the seismic attenuation signature of these rocks can be accurately represented by either one of the FMN models. Besides, we demonstrate that the ladder model in particular exhibits the realistic multiscale fractal structure of the saturated rocks. Therefore, the FMN models as a proxy could provide a new way to estimate the microscopic rock structure property from macroscopic seismic attenuation observation. 
    more » « less
  3. We present a set of experiments utilizing wideband real-time adaptive full-duplex (FD) radios, demonstrating simultaneous transmission and reception on the same frequency channel. Each FD radio consists of a circulator-based antenna interface, a switched-capacitor delay-line-based configurable Radio-Frequency Integrated Circuit (RFIC) that implements Self-Interference Cancellation (SIC), an FPGA that optimizes the RFIC configuration in under 1.1 sec and can adapt to environmental changes in under 0.3 sec, and a Software-Defined Radio (SDR) transmitting OFDM-like packets. We demonstrate a real-time adaptive FD radio that achieves the SIC necessary to reach the noise floor across a wide bandwidth of 50 MHz. Then, we use two FD radios to create a wireless link and showcase the superior FD throughput. 
    more » « less
  4. As they hold extraordinary mechanical and physical properties, two-dimensional (2D) atomic layer materials, including graphene, transition metal dichalcogenides, and MXenes, have attracted a great deal of attention. The characterization of energy and charge transport in these materials is particularly crucial for their applications. As noncontact methods, Raman-based techniques are widely used in exploring the energy and charge transport in 2D materials. In this review, we explain the principle of Raman-based thermometry in detail. We critically review different Raman-based techniques, which include steady state Raman, time-domain differential Raman, frequency-resolved Raman, and energy transport state-resolved Raman techniques constructed in the frequency domain, space domain, and time domain. Detailed outlooks are provided about Raman-based energy and charge transport in 2D materials and issues that need special attention. 
    more » « less
  5. Geometric graph models of systems as diverse as proteins, DNA assemblies, architected materials and robot swarms are useful abstract representations of these objects that also unify ways to study their properties and control them in space and time. While much work has been done in the context of characterizing the behaviour of these networks close to critical points associated with bond and rigidity percolation, isostaticity, etc., much less is known about floppy, underconstrained networks that are far more common in nature and technology. Here, we combine geometric rigidity and algebraic sparsity to provide a framework for identifying the zero energy floppy modes via a representation that illuminates the underlying hierarchy and modularity of the network and thence the control of its nestedness and locality. Our framework allows us to demonstrate a range of applications of this approach that include robotic reaching tasks with motion primitives, and predicting the linear and nonlinear response of elastic networks based solely on infinitesimal rigidity and sparsity, which we test using physical experiments. Our approach is thus likely to be of use broadly in dissecting the geometrical properties of floppy networks using algebraic sparsity to optimize their function and performance. 
    more » « less