Abstract In coastal West Antarctic Peninsula (WAP) waters, large phytoplankton blooms in late austral spring fuel a highly productive marine ecosystem. However, WAP atmospheric and oceanic temperatures are rising, winter sea ice extent and duration are decreasing, and summer phytoplankton biomass in the northern WAP has decreased and shifted toward smaller cells. To better understand these relationships, an Imaging FlowCytobot was used to characterize seasonal (spring to autumn) phytoplankton community composition and cell size during a low (2017–2018) and high (2018–2019) chlorophyllayear in relation to physical drivers (e.g., sea ice and meteoric water) at Palmer Station, Antarctica. A shorter sea ice season with early rapid retreat resulted in low phytoplankton biomass with a low proportion of diatoms (2017–2018), while a longer sea ice season with late protracted retreat resulted in the opposite (2018–2019). Despite these differences, phytoplankton seasonal succession was similar in both years: (1) a large‐celled centric diatom bloom during spring sea ice retreat; (2) a peak summer phase comprised of mixotrophic cryptophytes with increases in light and postbloom organic matter; and (3) a late summer phase comprised of small (< 20 μm) diatoms and mixed flagellates with increases in wind‐driven nutrient resuspension. In addition, cell diameter decreased from November to April with increases in meteoric water in both years. The tight coupling between sea ice, meltwater, and phytoplankton species composition suggests that continued warming in the WAP will affect phytoplankton seasonal dynamics, and subsequently seasonal food web dynamics.
more »
« less
Seasonal and interannual changes in a coastal Antarctic zooplankton community
Seasonal fluctuations are key features of high-latitude marine ecosystems, where zooplankton exhibit a wide array of adaptations within their life cycles. Repeated, sub-seasonal sampling of Antarctic zooplankton is rare, even along the West Antarctic Peninsula (WAP), where multidecadal changes in sea ice and phytoplankton are well documented. We quantified zooplankton biomass, size structure, and composition at 2 coastal time-series stations in the northern WAP over 3 field seasons (November-March) with different sea-ice, temperature, and phytoplankton conditions. Seasonal peaks in zooplankton biomass followed weeks after phytoplankton blooms. Biomass of mesozooplankton (0.2-2 mm) was consistent and low, while high biomass of macrozooplankton (>2 mm) occasionally resulted in a size distribution dominated by krill and salps, which appears to be a characteristic phenomenon of the Southern Ocean. Zooplankton composition and size changed between years and from spring to summer as the water column warmed after sea-ice breakup. Seasonal succession was apparent typically in decreasing zooplankton size and a shift to species that are less dependent upon phytoplankton. Mean central abundance dates varied by 54 d across 14 taxa, and specific feeding preferences and life-history traits explained the different seasonal abundance patterns. In all 3 yr, the dominant euphausiid species switched from Euphausia superba in spring to Thysanoessa macrura in late summer. Various taxa shifted their phenology between years in response to the timing of sea-ice breakup and the onset of phytoplankton productivity, a level of natural environmental variability to which they appear resilient. Nevertheless, the limits to this resilience in response to climate change remain uncertain.
more »
« less
- PAR ID:
- 10411780
- Publisher / Repository:
- Inter-Research
- Date Published:
- Journal Name:
- Marine Ecology Progress Series
- Volume:
- 706
- ISSN:
- 0171-8630
- Page Range / eLocation ID:
- 17 to 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ocean coastal‐shelf‐slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea‐ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea‐ice, and biogeochemistry model (MITgcm‐REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea‐ice and ocean color, and research ship surveys from the Palmer Long‐Term Ecological Research (LTER) program. The simulations suggest that the annual sea‐ice cycle has an important role in the seasonal DIC drawdown. In years of early sea‐ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea‐ice retreat show larger DIC drawdown, attributed to lower air‐sea CO2fluxes and increased dilution by sea‐ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.more » « less
-
The transition from winter to spring represents a major shift in the basal energy source for the Antarctic marine ecosystem from lipids and other sources of stored energy to sunlight. Because sea ice imposes a strong control on the transmission of sunlight into the water column during the polar spring, we hypothesized that the timing of the sea ice retreat influences the timing of the transition from stored energy to photosynthesis. To test the influence of sea ice on water column microbial energy utilization we took advantage of unique sea ice conditions in Arthur Harbor, an embayment near Palmer Station on the western Antarctic Peninsula, during the 2015 spring–summer seasonal transition. Over a 5-week period we sampled water from below land-fast sea ice, in the marginal ice zone at nearby Palmer Station B, and conducted an ice removal experiment with incubations of water collected below the land-fast ice. Whole-community metatranscriptomes were paired with lipidomics to better understand how lipid production and utilization was influenced by light conditions. We identified several different phytoplankton taxa that responded similarly to light by the number of genes up-regulated, and in the transcriptional complexity of this response. We applied a principal components analysis to these data to reduce their dimensionality, revealing that each of these taxa exhibited a strikingly different pattern of gene up-regulation. By correlating the changes in lipid concentration to the first principal component of log fold-change for each taxa we could make predictions about which taxa were associated with different changes in the community lipidome. We found that genes coding for the catabolism of triacylglycerol storage lipids were expressed early on in phytoplankton associated with aFragilariopsis kerguelensisreference transcriptome. Phytoplankton associated with aCorethron pennatumreference transcriptome occupied an adjacent niche, responding favorably to higher light conditions thanF. kerguelensis. Other diatom and dinoflagellate taxa had distinct transcriptional profiles and correlations to lipids, suggesting diverse ecological strategies during the polar winter–spring transition.more » « less
-
In freshwater lakes and reservoirs, climate change and eutrophication are increasing the occurrence of low-dissolved oxygen concentrations (hypoxia), which has the potential to alter the variability of zooplankton seasonal dynamics. We sampled zooplankton and physical, chemical and biological variables (e.g., temperature, dissolved oxygen, and chlorophyll a) in four reservoirs during the summer stratified period for three consecutive years. The hypolimnion (bottom waters) of two reservoirs remained oxic throughout the entire stratified period, whereas the hypolimnion of the other two reservoirs became hypoxic during the stratified period. Biomass variability (measured as the coefficient of the variation of zooplankton biomass) and compositional variability (measured as the community composition of zooplankton) of crustacean zooplankton communities were similar throughout the summer in the oxic reservoirs; however, biomass variability and compositional variability significantly increased after the onset of hypoxia in the two seasonally-hypoxic reservoirs. The increase in biomass variability in the seasonally-hypoxic reservoirs was driven largely by an increase in the variability of copepod biomass, while the increase in compositional variability was driven by increased variability in the dominance (proportion of total crustacean zooplankton biomass) of copepod taxa. Our results suggest that hypoxia may increase the seasonal variability of crustacean zooplankton communities.more » « less
-
Beisner, Beatrix E (Ed.)Abstract The prolonged ice cover inherent to alpine lakes incurs unique challenges for aquatic life, which are compounded by recent shifts in the timing and duration of ice cover. To understand the responses of alpine zooplankton, we analyzed a decade (2009–2019) of open-water samples of Daphnia pulicaria and Hesperodiaptomus shoshone for growth, reproduction and ultraviolet radiation tolerance. Due to reproductive differences between taxa, we expected clonal cladocerans to exhibit a more rapid response to ice-cover changes relative to copepods dependent on sexual reproduction. For D. pulicaria, biomass and melanization were lowest after ice clearance and increased through summer, whereas fecundity was highest shortly after ice-off. For H. shoshone, biomass and fecundity peaked later but were generally less variable through time. Among years, ice clearance date varied by 49 days; years with earlier ice-out and a longer growing season supported higher D. pulicaria biomass and clutch sizes along with greater H. shoshone fecundity. While these large-bodied, stress tolerant zooplankton taxa were relatively resilient to phenological shifts during the observation period, continued losses of ice cover may create unfavorably warm conditions and facilitate invasion by montane species, emphasizing the value of long-term data in assessing future changes to these sensitive ecosystems.more » « less
An official website of the United States government

