skip to main content


Title: Seasonal and interannual changes in a coastal Antarctic zooplankton community
Seasonal fluctuations are key features of high-latitude marine ecosystems, where zooplankton exhibit a wide array of adaptations within their life cycles. Repeated, sub-seasonal sampling of Antarctic zooplankton is rare, even along the West Antarctic Peninsula (WAP), where multidecadal changes in sea ice and phytoplankton are well documented. We quantified zooplankton biomass, size structure, and composition at 2 coastal time-series stations in the northern WAP over 3 field seasons (November-March) with different sea-ice, temperature, and phytoplankton conditions. Seasonal peaks in zooplankton biomass followed weeks after phytoplankton blooms. Biomass of mesozooplankton (0.2-2 mm) was consistent and low, while high biomass of macrozooplankton (>2 mm) occasionally resulted in a size distribution dominated by krill and salps, which appears to be a characteristic phenomenon of the Southern Ocean. Zooplankton composition and size changed between years and from spring to summer as the water column warmed after sea-ice breakup. Seasonal succession was apparent typically in decreasing zooplankton size and a shift to species that are less dependent upon phytoplankton. Mean central abundance dates varied by 54 d across 14 taxa, and specific feeding preferences and life-history traits explained the different seasonal abundance patterns. In all 3 yr, the dominant euphausiid species switched from Euphausia superba in spring to Thysanoessa macrura in late summer. Various taxa shifted their phenology between years in response to the timing of sea-ice breakup and the onset of phytoplankton productivity, a level of natural environmental variability to which they appear resilient. Nevertheless, the limits to this resilience in response to climate change remain uncertain.  more » « less
Award ID(s):
2026045 1659656 1950242 2224611
NSF-PAR ID:
10411780
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Inter-Research
Date Published:
Journal Name:
Marine Ecology Progress Series
Volume:
706
ISSN:
0171-8630
Page Range / eLocation ID:
17 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. <italic>Abstract</italic>

    Pteropods are abundant zooplankton in the Western Antarctic Peninsula (WAP) and important grazers of phytoplankton and prey for higher trophic levels. We analyzed long‐term (1993–2017) trends in summer (January–February) abundance of WAP pteropods in relation to environmental controls (sea ice, sea surface temperature, climate indices, phytoplankton biomass and productivity, and carbonate chemistry) and interspecies dynamics using general linear models. There was no overall directional trend in abundance of thecosomes,Limacina helicina antarcticaandClio pyramidata,throughout the entire WAP, althoughL. antarcticaabundance increased in the slope region andC. pyramidataabundance increased in the South. HighL. antarcticaabundance was strongly tied to a negative Multivariate El Niño Southern Oscillation Index the previous year.C. pyramidataabundance was best explained by early sea ice retreat 1‐yr prior. Abundance of the gymnosome species,Clione antarcticaandSpongiobranchaea australis, increased over the time series, particularly in the slope region. Gymnosome abundance was positively influenced by abundance of their prey,L. antarctica,during the same season, and late sea ice advance 2‐yr prior. These trends indicate a shorter ice season promotes longer periods of open water in spring/summer favoring all pteropod species. Weak relationships were found between pteropod abundance and carbonate chemistry, and no long‐term trend in carbonate parameters was detected. These factors indicate ocean acidification is not presently influencing WAP pteropod abundance. Pteropods are responsive to the considerable environmental variability on both temporal and spatial scales—key for predicting future effects of climate change on regional carbon cycling and plankton trophic interactions.

     
    more » « less
  2. Abstract

    The ocean coastal‐shelf‐slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea‐ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea‐ice, and biogeochemistry model (MITgcm‐REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea‐ice and ocean color, and research ship surveys from the Palmer Long‐Term Ecological Research (LTER) program. The simulations suggest that the annual sea‐ice cycle has an important role in the seasonal DIC drawdown. In years of early sea‐ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea‐ice retreat show larger DIC drawdown, attributed to lower air‐sea CO2fluxes and increased dilution by sea‐ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.

     
    more » « less
  3. The transition from winter to spring represents a major shift in the basal energy source for the Antarctic marine ecosystem from lipids and other sources of stored energy to sunlight. Because sea ice imposes a strong control on the transmission of sunlight into the water column during the polar spring, we hypothesized that the timing of the sea ice retreat influences the timing of the transition from stored energy to photosynthesis. To test the influence of sea ice on water column microbial energy utilization we took advantage of unique sea ice conditions in Arthur Harbor, an embayment near Palmer Station on the western Antarctic Peninsula, during the 2015 spring–summer seasonal transition. Over a 5-week period we sampled water from below land-fast sea ice, in the marginal ice zone at nearby Palmer Station B, and conducted an ice removal experiment with incubations of water collected below the land-fast ice. Whole-community metatranscriptomes were paired with lipidomics to better understand how lipid production and utilization was influenced by light conditions. We identified several different phytoplankton taxa that responded similarly to light by the number of genes up-regulated, and in the transcriptional complexity of this response. We applied a principal components analysis to these data to reduce their dimensionality, revealing that each of these taxa exhibited a strikingly different pattern of gene up-regulation. By correlating the changes in lipid concentration to the first principal component of log fold-change for each taxa we could make predictions about which taxa were associated with different changes in the community lipidome. We found that genes coding for the catabolism of triacylglycerol storage lipids were expressed early on in phytoplankton associated with aFragilariopsis kerguelensisreference transcriptome. Phytoplankton associated with aCorethron pennatumreference transcriptome occupied an adjacent niche, responding favorably to higher light conditions thanF. kerguelensis. Other diatom and dinoflagellate taxa had distinct transcriptional profiles and correlations to lipids, suggesting diverse ecological strategies during the polar winter–spring transition.

     
    more » « less
  4. Abstract

    Every austral spring when Antarctic sea ice melts, favorable growing conditions lead to an intense phytoplankton bloom, which supports much of the local marine ecosystem. Recent studies have found that Antarctic sea ice is predictable several years in advance, suggesting that the spring bloom might exhibit similar predictability. Using a suite of perfect model predictability experiments, we find that November net primary production (NPP) is potentially predictable 7 to 10 years in advance in many Southern Ocean regions. Sea ice extent predictability peaks in late winter, followed by absorbed shortwave radiation and NPP with a 2 to 3 months lag. This seasonal progression of predictability supports our hypothesis that sea ice and light limitation control the inherent predictability of the spring bloom. Our results suggest skillful interannual predictions of NPP may be achievable, with implications for managing fisheries and the marine ecosystem, and guiding conservation policy in the Southern Ocean.

     
    more » « less
  5. Abstract: The timing of sea ice retreat, light availability, and sea surface stratification largely control the phytoplankton community composition in the Chukchi Sea. This region is experiencing a significant warming trend, an overall decrease in sea ice cover, and a documented decline in annual sea ice persistence and thickness over the past several decades. The consequences of earlier seasonal sea ice retreat and a longer sea-ice-free season on phytoplankton community composition warrant investigation. We applied multivariate statistical techniques to elucidate the mechanisms that relate environmental variables to phytoplankton community composition in the Chukchi Sea using data collected during a single field campaign in the summer of 2011. Three phytoplankton groups emerged that were correlated with sea ice, sea surface temperature, nutrients, salinity, and light. Longer ice-free duration in a future Chukchi Sea will result in warmer sea surface temperatures and nutrient depletion, which we conclude will favor other phytoplankton types over larger diatoms. Plain Language Summary: In the Chukchi Sea, the seasonality of sea ice shapes ecosystem structure of the water column under both sea-ice-covered and sea-ice-free conditions. As such, phytoplankton community composition under both conditions responds to water column structure and nutrient availability. Owing to recent warming in the Arctic, sea ice is thinner and retreats earlier. To date, we do not fully understand the long-term consequences of earlier sea ice retreat on phytoplankton community composition and carbon biomass. To this end, we used environmental and phytoplankton data to relate how differences in ecosystem function under sea-ice-covered and sea-ice-free conditions govern phytoplankton communities. The results from this data set suggest that a future, sea-ice-free Chukchi Sea will exhibit lower phytoplankton biomass, impacting the food web and carbon export. 
    more » « less