skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2026045

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Between 1992 and 2018, the breeding population of Adélie penguins around Anvers Island, Antarctica declined by 98%. In this region, natural climate variability drives five‐year cycling in marine phytoplankton productivity, leading to phase‐offset five‐year cycling in the size of the krill population. We demonstrate that the rate of change of the Adélie breeding population also shows five‐year cycling. We link this population response to cyclical krill scarcity, a phenomenon which appears to have arisen from the interaction between climate variability and climate change trends. Modeling suggests that, since at least 1980, natural climate variability has driven cycling in this marine system. However, anthropogenic climate change has shifted conditions so that fewer years in each cycle now prompt strong krill recruitment, triggering intervals of krill scarcity that result in drastic declines in Adélie penguins. Our results imply that climate change can amplify the impacts of natural climate oscillations across trophic levels, driving cycling across species and disrupting food webs. The findings indicate that climate variability plays an integral role in driving ecosystem dynamics under climate change. 
    more » « less
  2. Abstract Changes in iceberg calving fluxes and oceanographic conditions around Antarctica have likely influenced the spatial and temporal distribution of iceberg fresh water fluxes to the surrounding ocean basins. However, Antarctic iceberg melt rate estimates have been limited to very large icebergs in the open ocean. Here we use a remote-sensing approach to estimate iceberg melt rates from 2011 to 2022 for 15 study sites around Antarctica. Melt rates generally increase with iceberg draft and follow large-scale variations in ocean temperature: maximum melt rates for the western peninsula, western ice sheet, eastern ice sheet and eastern peninsula are ~50, ~40, ~5 and ~5 m a−1, respectively. Iceberg melt sensitivity to thermal forcing varies widely, with a best-estimate increase in melting of ~24 m a−1°C−1and range from near-zero to ~100 m a−1°C−1. Variations in water shear likely contribute to the apparent spread in thermal forcing sensitivity across sites. Although the sensitivity of iceberg melt rates to water shear prevents the use of melt rates as a proxy to infer coastal water mass temperature variability, additional coastal iceberg melt observations will likely improve models of Southern Ocean fresh water fluxes and have potential for subglacial discharge plume mapping. 
    more » « less
  3. Abstract The notothenioid family Bathydraconidae is a poorly understood family of fishes endemic to the Southern Ocean. There is especially little information onAkarotaxis nudiceps, one of the deepest‐dwelling and least fecund bathydraconid species. Using genetic and morphological data, we document and describe the larval stages of this unique species, offer a novel characteristic to distinguish it from the morphologically similar bathydraconidPrionodraco evansiiand use the sampling locations to infer a possible spawning area ofA. nudicepsalong the western Antarctic Peninsula. These results provide important baseline information for locating, identifying and studying the biology ofA. nudiceps, an important component of the Southern Ocean ecosystem. 
    more » « less
  4. Abstract We assess the Southern Ocean CO2uptake (1985–2018) using data sets gathered in the REgional Carbon Cycle Assessment and Processes Project Phase 2. The Southern Ocean acted as a sink for CO2with close agreement between simulation results from global ocean biogeochemistry models (GOBMs, 0.75 ± 0.28 PgC yr−1) andpCO2‐observation‐based products (0.73 ± 0.07 PgC yr−1). This sink is only half that reported by RECCAP1 for the same region and timeframe. The present‐day net uptake is to first order a response to rising atmospheric CO2, driving large amounts of anthropogenic CO2(Cant) into the ocean, thereby overcompensating the loss of natural CO2to the atmosphere. An apparent knowledge gap is the increase of the sink since 2000, withpCO2‐products suggesting a growth that is more than twice as strong and uncertain as that of GOBMs (0.26 ± 0.06 and 0.11 ± 0.03 Pg C yr−1 decade−1, respectively). This is despite nearly identicalpCO2trends in GOBMs andpCO2‐products when both products are compared only at the locations wherepCO2was measured. Seasonal analyses revealed agreement in driving processes in winter with uncertainty in the magnitude of outgassing, whereas discrepancies are more fundamental in summer, when GOBMs exhibit difficulties in simulating the effects of the non‐thermal processes of biology and mixing/circulation. Ocean interior accumulation of Cantpoints to an underestimate of Cantuptake and storage in GOBMs. Future work needs to link surface fluxes and interior ocean transport, build long overdue systematic observation networks and push toward better process understanding of drivers of the carbon cycle. 
    more » « less
  5. Abstract BackgroundDespite exhibiting one of the longest migrations in the world, half of the humpback whale migratory cycle has remained unexamined. Until now, no study has provided a continuous description of humpback whale migratory behavior from a feeding ground to a calving ground. We present new information on satellite-derived offshore migratory movements of 16 Breeding Stock G humpback whales from Antarctic feeding grounds to South American calving grounds. Satellite locations were used to demonstrate migratory corridors, while the impact of departure date on migration speed was assessed using a linear regression. A Bayesian hierarchical state–space animal movement model (HSSM) was utilized to investigate the presence of Area Restricted Search (ARS) en route. Results35,642 Argos locations from 16 tagged whales from 2012 to 2017 were collected. The 16 whales were tracked for a mean of 38.5 days of migration (range 10–151 days). The length of individually derived tracks ranged from 645 to 6381 km. Humpbacks were widely dispersed geographically during the initial and middle stages of their migration, but convened in two convergence regions near the southernmost point of Chile as well as Peru’s Illescas Peninsula. The state–space model showed almost no instances of ARS along the migratory route. The linear regression assessing whether departure date affected migration speed showed suggestive but inconclusive support for a positive trend between the two variables. Results suggestive of stratification by sex and reproductive status were found for departure date and route choice. ConclusionsThis multi-year study sets a baseline against which the effects of climate change on humpback whales can be studied across years and conditions and provides an excellent starting point for the investigation into humpback whale migration. 
    more » « less
  6. Abstract We examined microbial succession along a glacier forefront in the Antarctic Peninsula representing ∼30 years of deglaciation to contrast bacterial and eukaryotic successional dynamics and abiotic drivers of community assembly using sequencing and soil properties. Microbial communities changed most rapidly early along the chronosequence, and co-occurrence network analysis showed the most complex topology at the earliest stage. Initial microbial communities were dominated by microorganisms derived from the glacial environment, whereas later stages hosted a mixed community of taxa associated with soils. Eukaryotes became increasingly dominated by Cercozoa, particularly Vampyrellidae, indicating a previously unappreciated role for cercozoan predators during early stages of primary succession. Chlorophytes and Charophytes (rather than cyanobacteria) were the dominant primary producers and there was a spatio-temporal sequence in which major groups became abundant succeeding from simple ice Chlorophytes to Ochrophytes and Bryophytes. Time since deglaciation and pH were the main abiotic drivers structuring both bacterial and eukaryotic communities. Determinism was the dominant assembly mechanism for Bacteria, while the balance between stochastic/deterministic processes in eukaryotes varied along the distance from the glacier front. This study provides new insights into the unexpected dynamic changes and interactions across multiple trophic groups during primary succession in a rapidly changing polar ecosystem. 
    more » « less
  7. Abstract Glucocorticoids are regularly used as biomarkers of relative health for individuals and populations. Around the Western Antarctic Peninsula (WAP), baleen whales have and continue to experience threats, including commercial harvest, prey limitations and habitat change driven by rapid warming, and increased human presence via ecotourism. Here, we measured demographic variation and differences across the foraging season in blubber cortisol levels of humpback whales (Megaptera novaeangliae) over two years around the WAP. Cortisol concentrations were determined from 305 biopsy samples of unique individuals. We found no significant difference in the cortisol concentration between male and female whales. However, we observed significant differences across demographic groups of females and a significant decrease in the population across the feeding season. We also assessed whether COVID-19-related reductions in tourism in 2021 along the WAP correlated with lower cortisol levels across the population. The decline in vessel presence in 2021 was associated with a significant decrease in humpback whale blubber cortisol concentrations at the population level. Our findings provide critical contextual data on how these hormones vary naturally in a population over time, show direct associations between cortisol levels and human presence, and will enable comparisons among species experiencing different levels of human disturbance. 
    more » « less
  8. Abstract In coastal West Antarctic Peninsula (WAP) waters, large phytoplankton blooms in late austral spring fuel a highly productive marine ecosystem. However, WAP atmospheric and oceanic temperatures are rising, winter sea ice extent and duration are decreasing, and summer phytoplankton biomass in the northern WAP has decreased and shifted toward smaller cells. To better understand these relationships, an Imaging FlowCytobot was used to characterize seasonal (spring to autumn) phytoplankton community composition and cell size during a low (2017–2018) and high (2018–2019) chlorophyllayear in relation to physical drivers (e.g., sea ice and meteoric water) at Palmer Station, Antarctica. A shorter sea ice season with early rapid retreat resulted in low phytoplankton biomass with a low proportion of diatoms (2017–2018), while a longer sea ice season with late protracted retreat resulted in the opposite (2018–2019). Despite these differences, phytoplankton seasonal succession was similar in both years: (1) a large‐celled centric diatom bloom during spring sea ice retreat; (2) a peak summer phase comprised of mixotrophic cryptophytes with increases in light and postbloom organic matter; and (3) a late summer phase comprised of small (< 20 μm) diatoms and mixed flagellates with increases in wind‐driven nutrient resuspension. In addition, cell diameter decreased from November to April with increases in meteoric water in both years. The tight coupling between sea ice, meltwater, and phytoplankton species composition suggests that continued warming in the WAP will affect phytoplankton seasonal dynamics, and subsequently seasonal food web dynamics. 
    more » « less
  9. Abstract Uptake of anthropogenic carbon dioxide from the atmosphere by the surface ocean is leading to global ocean acidification, but regional variations in ocean circulation and mixing can dampen or accelerate apparent acidification rates. Here we use a regional ocean model simulation for the years 1980 to 2013 and observational data to investigate how ocean fluctuations impact acidification rates in surface waters of the Gulf of Alaska. We find that large-scale atmospheric forcing influenced local winds and upwelling strength, which in turn affected ocean acidification rate. Specifically, variability in local wind stress curl depressed sea surface height in the subpolar gyre over decade-long intervals, which increased upwelling of nitrate- and dissolved inorganic carbon-rich waters and enhanced apparent ocean acidification rates. We define this sea surface height variability as the Northern Gulf of Alaska Oscillation and suggest that it can cause extreme acidification events that are detrimental to ecosystem health and fisheries. 
    more » « less
  10. Abstract Since the middle of the past century, the Western Antarctic Peninsula has warmed rapidly with a significant loss of sea ice but the impacts on plankton biodiversity and carbon cycling remain an open question. Here, using a 5-year dataset of eukaryotic plankton DNA metabarcoding, we assess changes in biodiversity and net community production in this region. Our results show that sea-ice extent is a dominant factor influencing eukaryotic plankton community composition, biodiversity, and net community production. Species richness and evenness decline with an increase in sea surface temperature (SST). In regions with low SST and shallow mixed layers, the community was dominated by a diverse assemblage of diatoms and dinoflagellates. Conversely, less diverse plankton assemblages were observed in waters with higher SST and/or deep mixed layers when sea ice extent was lower. A genetic programming machine-learning model explained up to 80% of the net community production variability at the Western Antarctic Peninsula. Among the biological explanatory variables, the sea-ice environment associated plankton assemblage is the best predictor of net community production. We conclude that eukaryotic plankton diversity and carbon cycling at the Western Antarctic Peninsula are strongly linked to sea-ice conditions. 
    more » « less