skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: The Nakayama functor and its completion for Gorenstein algebras
Duality properties are studied for a Gorenstein algebra that is finite and projective over its center. Using the homotopy category of injective modules, it is proved that there is a local duality theorem for the subcategory of acyclic complexes of such an algebra, akin to the local duality theorems of Grothendieck and Serre in the context of commutative algebra and algebraic geometry. A key ingredient is the Nakayama functor on the bounded derived category of a Gorenstein algebra and its extension to the full homotopy category of injective modules.  more » « less
Award ID(s):
2001368 1700985
PAR ID:
10411808
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Bulletin de la Société mathématique de France
Volume:
150
Issue:
2
ISSN:
0037-9484
Page Range / eLocation ID:
347-391
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A duality theorem for the singularity category of a finite dimensional Gorenstein algebra is proved. It complements a duality on the category of perfect complexes, discovered by Happel. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $$\mathfrak{p}$$ -local and $$\mathfrak{p}$$ -torsion subcategories of the derived category, for each homogeneous prime ideal $$\mathfrak{p}$$ arising from the action of a commutative ring via Hochschild cohomology. 
    more » « less
  2. We study modules over the commutative ring spectrum 𝐻𝔽₂∧𝐻𝔽₂, whose coefficient groups are quotients of the dual Steenrod algebra by collections of the Milnor generators. We show that very few of these quotients admit algebra structures, but those that do can be constructed simply: killing a generator ξ_{k} in the category of associative algebras freely kills the higher generators ξ_{k+n}. Using new information about the conjugation operation in the dual Steenrod algebra, we also consider quotients by families of Milnor generators and their conjugates. This allows us to produce a family of associative 𝐻𝔽₂∧𝐻𝔽₂-algebras whose coefficient rings are finite-dimensional and exhibit unexpected duality features. We then use these algebras to give detailed computations of the homotopy groups of several modules over this ring spectrum. 
    more » « less
  3. Abstract Let $$V_*\otimes V\rightarrow {\mathbb {C}}$$ V ∗ ⊗ V → C be a non-degenerate pairing of countable-dimensional complex vector spaces V and $$V_*$$ V ∗ . The Mackey Lie algebra $${\mathfrak {g}}=\mathfrak {gl}^M(V,V_*)$$ g = gl M ( V , V ∗ ) corresponding to this pairing consists of all endomorphisms $$\varphi $$ φ of V for which the space $$V_*$$ V ∗ is stable under the dual endomorphism $$\varphi ^*: V^*\rightarrow V^*$$ φ ∗ : V ∗ → V ∗ . We study the tensor Grothendieck category $${\mathbb {T}}$$ T generated by the $${\mathfrak {g}}$$ g -modules V , $$V_*$$ V ∗ and their algebraic duals $$V^*$$ V ∗ and $$V^*_*$$ V ∗ ∗ . The category $${{\mathbb {T}}}$$ T is an analogue of categories considered in prior literature, the main difference being that the trivial module $${\mathbb {C}}$$ C is no longer injective in $${\mathbb {T}}$$ T . We describe the injective hull I of $${\mathbb {C}}$$ C in $${\mathbb {T}}$$ T , and show that the category $${\mathbb {T}}$$ T is Koszul. In addition, we prove that I is endowed with a natural structure of commutative algebra. We then define another category $$_I{\mathbb {T}}$$ I T of objects in $${\mathbb {T}}$$ T which are free as I -modules. Our main result is that the category $${}_I{\mathbb {T}}$$ I T is also Koszul, and moreover that $${}_I{\mathbb {T}}$$ I T is universal among abelian $${\mathbb {C}}$$ C -linear tensor categories generated by two objects X , Y with fixed subobjects $$X'\hookrightarrow X$$ X ′ ↪ X , $$Y'\hookrightarrow Y$$ Y ′ ↪ Y and a pairing $$X\otimes Y\rightarrow {\mathbf{1 }}$$ X ⊗ Y → 1 where 1 is the monoidal unit. We conclude the paper by discussing the orthogonal and symplectic analogues of the categories $${\mathbb {T}}$$ T and $${}_I{\mathbb {T}}$$ I T . 
    more » « less
  4. We study the category of S p \mathbf {Sp} -equivariant modules over the infinite variable polynomial ring, where S p \mathbf {Sp} denotes the infinite symplectic group. We establish a number of results about this category: for instance, we show that every finitely generated module M M fits into an exact triangle T → M → F → T \to M \to F \to where T T is a finite length complex of torsion modules and F F is a finite length complex of “free” modules; we determine the Grothendieck group; and we (partially) determine the structure of injective modules. We apply these results to show that the twisted commutative algebras Sym ⁡ ( C ∞ ⊕ ⋀ 2 C ∞ ) \operatorname {Sym}(\mathbf {C}^{\infty } \oplus \bigwedge ^2{\mathbf {C}^{\infty }}) and Sym ⁡ ( C ∞ ⊕ Sym 2 ⁡ C ∞ ) \operatorname {Sym}(\mathbf {C}^{\infty } \oplus \operatorname {Sym}^2{\mathbf {C}^{\infty }}) are noetherian, which are the strongest results to date of this kind. We also show that the free 2-step nilpotent twisted Lie algebra and Lie superalgebra are noetherian. 
    more » « less
  5. Abstract We develop a theory of stated SL()‐skein modules, , of 3‐manifolds marked with intervals in their boundaries. These skein modules, generalizing stated SL(2)‐modules of the first author, stated SL(3)‐modules of Higgins', and SU(n)‐skein modules of the second author, consist of linear combinations of framed, oriented graphs, called ‐webs, with ends in , considered up to skein relations of the ‐Reshetikhin–Turaev functor on tangles, involving coupons representing the anti‐symmetrizer and its dual. We prove the Splitting Theorem asserting that cutting of a marked 3‐manifold along a disk resulting in a 3‐manifold yields a homomorphism for all . That result allows to analyze the skein modules of 3‐manifolds through the skein modules of their pieces. The theory of stated skein modules is particularly rich for thickened surfaces , in whose case, is an algebra, denoted by . One of the main results of this paper asserts that the skein algebra of the ideal bigon is isomorphic with and it provides simple geometric interpretations of the product, coproduct, counit, the antipode, and the cobraided structure on . (In particular, the coproduct is given by a splitting homomorphism.) We show that for surfaces with boundary every splitting homomorphism is injective and that is a free module with a basis induced from the Kashiwara–Lusztig canonical bases. Additionally, we show that a splitting of a thickened bigon near a marking defines a right ‐comodule structure on , or dually, a left ‐module structure. Furthermore, we show that the skein algebra of surfaces glued along two sides of a triangle is isomorphic with the braided tensor product of Majid. These results allow for geometric interpretation of further concepts in the theory of quantum groups, for example, of the braided products and of Majid's transmutation operation. Building upon the above results, we prove that the factorization homology with coefficients in the category of representations of is equivalent to the category of left modules over for surfaces with . We also establish isomorphisms of our skein algebras with the quantum moduli spaces of Alekseev–Schomerus and with the internal algebras of the skein categories for these surfaces and . 
    more » « less