skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quotient rings of 𝐻𝔽₂∧𝐻𝔽₂
We study modules over the commutative ring spectrum 𝐻𝔽₂∧𝐻𝔽₂, whose coefficient groups are quotients of the dual Steenrod algebra by collections of the Milnor generators. We show that very few of these quotients admit algebra structures, but those that do can be constructed simply: killing a generator ξ_{k} in the category of associative algebras freely kills the higher generators ξ_{k+n}. Using new information about the conjugation operation in the dual Steenrod algebra, we also consider quotients by families of Milnor generators and their conjugates. This allows us to produce a family of associative 𝐻𝔽₂∧𝐻𝔽₂-algebras whose coefficient rings are finite-dimensional and exhibit unexpected duality features. We then use these algebras to give detailed computations of the homotopy groups of several modules over this ring spectrum.  more » « less
Award ID(s):
1906227
PAR ID:
10474296
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Mathematical Society
Date Published:
Journal Name:
Transactions of the American Mathematical Society
Volume:
374
Issue:
1051
ISSN:
0002-9947
Page Range / eLocation ID:
8949 to 8988
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper we develop methods for classifying Baker, Richter, and Szymik's Azumaya algebras over a commutative ring spectrum, especially in the largely inaccessible case where the ring is nonconnective. We give obstruction-theoretic tools, constructing and classifying these algebras and their automorphisms with Goerss–Hopkins obstruction theory, and give descent-theoretic tools, applying Lurie's work on $$\infty$$ -categories to show that a finite Galois extension of rings in the sense of Rognes becomes a homotopy fixed-point equivalence on Brauer spaces. For even-periodic ring spectra $$E$$ , we find that the ‘algebraic’ Azumaya algebras whose coefficient ring is projective are governed by the Brauer–Wall group of $$\pi _0(E)$$ , recovering a result of Baker, Richter, and Szymik. This allows us to calculate many examples. For example, we find that the algebraic Azumaya algebras over Lubin–Tate spectra have either four or two Morita equivalence classes, depending on whether the prime is odd or even, that all algebraic Azumaya algebras over the complex K-theory spectrum $KU$ are Morita trivial, and that the group of the Morita classes of algebraic Azumaya algebras over the localization $KU[1/2]$ is $$\mathbb {Z}/8\times \mathbb {Z}/2$$ . Using our descent results and an obstruction theory spectral sequence, we also study Azumaya algebras over the real K-theory spectrum $KO$ which become Morita-trivial $KU$ -algebras. We show that there exist exactly two Morita equivalence classes of these. The nontrivial Morita equivalence class is realized by an ‘exotic’ $KO$ -algebra with the same coefficient ring as $$\mathrm {End}_{KO}(KU)$$ . This requires a careful analysis of what happens in the homotopy fixed-point spectral sequence for the Picard space of $KU$ , previously studied by Mathew and Stojanoska. 
    more » « less
  2. Abstract Free algebras are always free as modules over the base ring in classical algebra. In equivariant algebra, free incomplete Tambara functors play the role of free algebras and Mackey functors play the role of modules. Surprisingly, free incomplete Tambara functors often fail to be free as Mackey functors. In this paper, we determine for all finite groups conditions under which a free incomplete Tambara functor is free as a Mackey functor. For solvable groups, we show that a free incomplete Tambara functor is flat as a Mackey functor precisely when these conditions hold. Our results imply that free incomplete Tambara functors are almost never flat as Mackey functors. However, we show that after suitable localizations, free incomplete Tambara functors are always free as Mackey functors. 
    more » « less
  3. Here we introduce a series of associative algebras attached to a vertex operator algebra V of CFT type, called mode transition algebras, and show they reflect both algebraic properties of V and geometric constructions on moduli of curves. Pointed and coordinatized curves, labeled by admissible V-modules, give rise to sheaves of coinvariants. We show that if the mode transition algebras admit multiplicative identities satisfying certain natural properties (called strong identity elements), these sheaves deform as wanted on families of curves with nodes. This provides new contexts in which coherent sheaves of coinvariants form vector bundles. We also show that mode transition algebras carry information about higher level Zhu algebras and generalized Verma modules. To illustrate, we explicitly describe the higher level Zhu algebras of the Heisenberg vertex operator algebra, proving a conjecture of Addabbo–Barron. 
    more » « less
  4. Abstract In this article, we continue the study of a certain family of 2-Calabi–Yau tilted algebras, called dimer tree algebras. The terminology comes from the fact that these algebras can also be realized as quotients of dimer algebras on a disk. They are defined by a quiver with potential whose dual graph is a tree, and they are generally of wild representation type. Given such an algebra $$B$$, we construct a polygon $$\mathcal {S}$$ with a checkerboard pattern in its interior, which defines a category $$\text {Diag}(\mathcal {S})$$. The indecomposable objects of $$\text {Diag}(\mathcal {S})$$ are the 2-diagonals in $$\mathcal {S}$$, and its morphisms are certain pivoting moves between the 2-diagonals. We prove that the category $$\text {Diag}(\mathcal {S})$$ is equivalent to the stable syzygy category of the algebra $$B$$. This result was conjectured by the authors in an earlier paper, where it was proved in the special case where every chordless cycle is of length three. As a consequence, we conclude that the number of indecomposable syzygies is finite, and moreover the syzygy category is equivalent to the 2-cluster category of type $$\mathbb {A}$$. In addition, we obtain an explicit description of the projective resolutions, which are periodic. Finally, the number of vertices of the polygon $$\mathcal {S}$$ is a derived invariant and a singular invariant for dimer tree algebras, which can be easily computed form the quiver. 
    more » « less
  5. In pursuit of a noncommutative spectrum functor, we argue that the Heyneman-Sweedler finite dual coalgebra can be viewed as a quantization of the maximal spectrum of a commutative affine algebra, integrating prior perspectives of Takeuchi, Batchelor, Kontsevich-Soibelman, and Le Bruyn. We introduce fully residually finite-dimensional algebras A as those with enough finite-dimensional representations to let A^o act as an appropriate depiction of the noncommutative maximal spectrum of A; importantly, this class includes affine noetherian PI algebras. In the case of prime affine algebras that are module-finite over their center, we describe how the Azumaya locus is represented in the finite dual. This is used to describe the finite dual of quantum planes at roots of unity as an endeavor to visualize the noncommutative space on which these algebras act as functions. Finally, we discuss how a similar analysis can be carried out for other maximal orders over surfaces. 
    more » « less