Researchers across nearly every discipline seek to leverage ontologies for knowledge discovery and computational tasks; yet, the number of machine readable materials science ontologies is limited. The work presented in this paper explores the Processing, Structure, Properties and Performance (PSPP) framework for accelerating the development of materials science ontologies. We pursue a case study framed by the creation of an Aerogel ontology and a Battery Cathode ontology and demonstrate the Helping Interdisciplinary Vocabulary Engineer for Materials Science (HIVE4MAT) as a proof of concept showing PSPP relationships. The paper includes background context covering materials science, the PSPP framework, and faceted analysis for ontologies. We report our research objectives, methods, research procedures, and results. The findings indicate that the PSPP framework offers a rubric that may help guide and potentially accelerate ontology development.
more »
« less
Materials Science Ontology Design with an Analytico-Synthetic Facet Analysis Framework
Researchers across nearly every discipline seek to leverage ontologies for knowledge discovery and computational tasks; yet, the number of machine readable materials science ontologies is limited. The work presented in this paper explores the Processing, Structure, Properties and Performance (PSPP) framework for accelerating the development of materials science ontologies. We pursue a case study framed by the creation of an Aerogel ontology and a Battery Cathode ontology and demonstrate the Helping Interdisciplinary Vocabulary Engineer for Materials Science (HIVE4MAT) as a proof of concept showing PSPP relationships. The paper includes background context covering materials science, the PSPP framework, and faceted analysis for ontologies. We report our research objectives, methods, research procedures, and results. The findings indicate that the PSPP framework offers a rubric that may help guide and potentially accelerate ontology development.
more »
« less
- Award ID(s):
- 2118201
- PAR ID:
- 10411821
- Date Published:
- Journal Name:
- Proceeding 16th International Conference on Metadata and Semantics Research
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Garoufallou, E; Ovalle-Perandones, M.A. (Ed.)This paper introduces Helping Interdisciplinary Vocabulary Engineering for Materials Science (HIVE-4-MAT), an automatic linked data ontology application. The paper provides contextual background for materials science, shared ontology infrastructures, and knowledge extraction applications. HIVE-4-MAT's three key features are reviewed: 1) Vocabulary browsing, 2) Term search and selection, and 3) Knowledge Extraction/Indexing, as well as the basics of named entity recognition (NER). The discussion elaborates on the importance of ontology infrastructures and steps taken to enhance knowledge extraction. The conclusion highlights next steps surveying the ontology landscape, including NER work as a step toward relation extraction (RE), and support for better ontologies.more » « less
-
null (Ed.)Purpose The output of academic literature has increased significantly due to digital technology, presenting researchers with a challenge across every discipline, including materials science, as it is impossible to manually read and extract knowledge from millions of published literature. The purpose of this study is to address this challenge by exploring knowledge extraction in materials science, as applied to digital scholarship. An overriding goal is to help inform readers about the status knowledge extraction in materials science. Design/methodology/approach The authors conducted a two-part analysis, comparing knowledge extraction methods applied materials science scholarship, across a sample of 22 articles; followed by a comparison of HIVE-4-MAT, an ontology-based knowledge extraction and MatScholar, a named entity recognition (NER) application. This paper covers contextual background, and a review of three tiers of knowledge extraction (ontology-based, NER and relation extraction), followed by the research goals and approach. Findings The results indicate three key needs for researchers to consider for advancing knowledge extraction: the need for materials science focused corpora; the need for researchers to define the scope of the research being pursued, and the need to understand the tradeoffs among different knowledge extraction methods. This paper also points to future material science research potential with relation extraction and increased availability of ontologies. Originality/value To the best of the authors’ knowledge, there are very few studies examining knowledge extraction in materials science. This work makes an important contribution to this underexplored research area.more » « less
-
An ontology is a structured framework that categorizes entities, concepts, and relationships within a domain to facilitate shared understanding, and it is important in computational linguistics and knowledge representation. In this paper, we propose a novel framework to automatically extend an existing ontology from streaming data in a zero-shot manner. Specifically, the zero-shot ontology extension framework uses online and hierarchical clustering to integrate new knowledge into existing ontologies without substantial annotated data or domain-specific expertise. Focusing on the medical field, this approach leverages Large Language Models (LLMs) for two key tasks: Symptom Typing and Symptom Taxonomy among breast and bladder cancer survivors. Symptom Typing involves identifying and classifying medical symptoms from unstructured online patient forum data, while Symptom Taxonomy organizes and integrates these symptoms into an existing ontology. The combined use of online and hierarchical clustering enables real-time and structured categorization and integration of symptoms. The dual-phase model employs multiple LLMs to ensure accurate classification and seamless integration of new symptoms with minimal human oversight. The paper details the framework's development, experiments, quantitative analyses, and data visualizations, demonstrating its effectiveness in enhancing medical ontologies and advancing knowledge-based systems in healthcare.more » « less
-
null (Ed.)Food ontologies require significant effort to create and maintain as they involve manual and time-consuming tasks, often with limited alignment to the underlying food science knowledge. We propose a semi-supervised framework for the automated ontology population from an existing ontology scaffold by using word embeddings. Having applied this on the domain of food and subsequent evaluation against an expert-curated ontology, FoodOn, we observe that the food word embeddings capture the latent relationships and characteristics of foods. The resulting ontology, which utilizes word embeddings trained from the Wikipedia corpus, has an improvement of 89.7% in precision when compared to the expert-curated ontology FoodOn (0.34 vs. 0.18, respectively, p value = 2.6 × 10 –138 ), and it has a 43.6% shorter path distance (hops) between predicted and actual food instances (2.91 vs. 5.16, respectively, p value = 4.7 × 10 –84 ) when compared to other methods. This work demonstrates how high-dimensional representations of food can be used to populate ontologies and paves the way for learning ontologies that integrate contextual information from a variety of sources and types.more » « less
An official website of the United States government

