skip to main content


Search for: All records

Award ID contains: 2118201

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Thermal energy management in metal-organic frameworks (MOFs) is an important, yet often neglected, challenge for many adsorption-based applications such as gas storage and separations. Despite its importance, there is insufficient understanding of the structure-property relationships governing thermal transport in MOFs. To provide a data-driven perspective into these relationships, here we perform large-scale computational screening of thermal conductivitykin MOFs, leveraging classical molecular dynamics simulations and 10,194 hypothetical MOFs created using the ToBaCCo 3.0 code. We found that high thermal conductivity in MOFs is favored by high densities (> 1.0 g cm−3), small pores (< 10 Å), and four-connected metal nodes. We also found that 36 MOFs exhibit ultra-low thermal conductivity (< 0.02 W m−1 K−1), which is primarily due to having extremely large pores (~65 Å). Furthermore, we discovered six hypothetical MOFs with very high thermal conductivity (> 10 W m−1 K−1), the structures of which we describe in additional detail.

     
    more » « less
  2. Abstract

    While machine learning has emerged in recent years as a useful tool for the rapid prediction of materials properties, generating sufficient data to reliably train models without overfitting is often impractical. Towards overcoming this limitation, we present a general framework for leveraging complementary information across different models and datasets for accurate prediction of data-scarce materials properties. Our approach, based on a machine learning paradigm called mixture of experts, outperforms pairwise transfer learning on 14 of 19 materials property regression tasks, performing comparably on four of the remaining five. The approach is interpretable, model-agnostic, and scalable to combining an arbitrary number of pre-trained models and datasets to any downstream property prediction task. We anticipate the performance of our framework will further improve as better model architectures, new pre-training tasks, and larger materials datasets are developed by the community.

     
    more » « less
  3. Abstract

    Materials with target nonlinear mechanical response can support the design of innovative soft robots, wearable devices, footwear, and energy‐absorbing systems, yet it is challenging to realize them. Here, mechanical metamaterials based on hinged quadrilaterals are used as a platform to realize target nonlinear mechanical responses. It is first shown that by changing the shape of the quadrilaterals, the amount of internal rotations induced by the applied compression can be tuned, and a wide range of mechanical responses is achieved. Next, a neural network is introduced that provides a computationally inexpensive relationship between the parameters describing the geometry and the corresponding stress–strain response. Finally, it is shown that by combining the neural network with an evolution strategy, one can efficiently identify geometries resulting in a wide range of target nonlinear mechanical responses and design optimized energy‐absorbing systems, soft robots, and morphing structures.

     
    more » « less
  4. Abstract

    Researchers collect large amounts of user interaction data with the goal of mapping user's workflows and behaviors to their high‐level motivations, intuitions, and goals. Although the visual analytics community has proposed numerous taxonomies to facilitate this mapping process, no formal methods exist for systematically applying these existing theories to user interaction logs. This paper seeks to bridge the gap between visualization task taxonomies and interaction log data by making the taxonomies more actionable for interaction log analysis. To achieve this, we leverage structural parallels between how people express themselves through interactions and language by reformulating existing theories asregular grammars.We represent interactions asterminalswithin a regular grammar, similar to the role of individual words in a language, and patterns of interactions ornon‐terminalsasregular expressionsover these terminals to capture common language patterns. To demonstrate our approach, we generate regular grammars for seven existing visualization taxonomies and develop code to apply them to three public interaction log datasets. In analyzing these regular grammars, we find that the taxonomies at the low‐level (i.e., terminals) show mixed results in expressing multiple interaction log datasets, and taxonomies at the high‐level (i.e., regular expressions) have limited expressiveness, due to primarily two challenges: inconsistencies in interaction log dataset granularity and structure, and under‐expressiveness of certain terminals. Based on our findings, we suggest new research directions for the visualization community to augment existing taxonomies, develop new ones, and build better interaction log recording processes to facilitate the data‐driven development of user behavior taxonomies.

     
    more » « less
  5. Abstract

    Benzene fluorination increases chemoselectivities for Dewar‐benzenes via 4π‐disrotatory electrocyclization. However, the origin of the chemo‐ and regioselectivities of fluorobenzenes remains unexplained because of the experimental limitations in resolving the excited‐state structures on ultrafast timescales. The computational cost of multiconfigurational nonadiabatic molecular dynamics simulations is also currently cost‐prohibitive. We now provide high‐fidelity structural information and reaction outcome predictions with machine‐learning‐accelerated photodynamics simulations of a series of fluorobenzenes, C6F6‐nHn, n=0–3, to study their S1→S0decay in 4 ns. We trained neural networks with XMS‐CASPT2(6,7)/aug‐cc‐pVDZ calculations, which reproduced the S1absorption features with mean absolute errors of 0.04 eV (<2 nm). The predicted nonradiative decay constants for C6F4H2, C6F6, C6F3H3, and C6F5H are 116, 60, 28, and 12 ps, respectively, in broad qualitative agreement with the experiments. Our calculations show that a pseudo Jahn–Teller distortion of fluorinated benzenes leads to an S1local‐minimum region that extends the excited‐state lifetimes of fluorobenzenes. The pseudo Jahn–Teller distortions reduce when fluorination decreases. Our analysis of the S1dynamics shows that the pseudo‐Jahn–Teller distortions promote an excited‐statecis‐transisomerization of a πC‐Cbond. We characterized the surface hopping points from our NAMD simulations and identified instantaneous nuclear momentum as a factor that promotes the electrocyclizations.

     
    more » « less
  6. Abstract

    Across fields of science, researchers have increasingly focused on designing soft devices that can shape‐morph to achieve functionality. However, identifying a rest shape that leads to a target 3D shape upon actuation is a non‐trivial task that involves inverse design capabilities. In this study, a simple and efficient platform is presented to design pre‐programmed 3D shapes starting from 2D planar composite membranes. By training neural networks with a small set of finite element simulations, the authors are able to obtain both the optimal design for a pixelated 2D elastomeric membrane and the inflation pressure required for it to morph into a target shape. The proposed method has potential to be employed at multiple scales and for different applications. As an example, it is shown how these inversely designed membranes can be used for mechanotherapy applications, by stimulating certain areas while avoiding prescribed locations.

     
    more » « less
  7. Free, publicly-accessible full text available May 1, 2025
  8. Free, publicly-accessible full text available February 14, 2025
  9. Free, publicly-accessible full text available January 2, 2025