skip to main content


This content will become publicly available on May 2, 2024

Title: Disproportionation of Sn(II){CH(SiMe 3 ) 2 } 2 to ·Sn(III){CH(SiMe 3 ) 2 } 3 and ·Sn(I){CH(SiMe 3 ) 2 }: Characterization of the Sn(I) Product
Half a century since the photocatalytic disproportionation of Lappert's dialkyl stannylene SnR 2 , R = CH(SiMe 3 ) 2 (1) gave the persistent trivalent radical [·SnR 3 ], the characterization of the corresponding Sn(I) product, ·SnR is now described. It was isolated as the hexastannaprismane Sn 6 R 6 (2), from the reduction of 1 by the Mg(I)-reagent, Mg(BDI Dip ) 2 , (BDI = (DipNCMe) 2 CH, Dip + 2,6-diisopropylphenyl).  more » « less
Award ID(s):
2152760
NSF-PAR ID:
10411829
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemical Communications
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reactions of the IrVhydride [MeBDIDipp]IrH4{BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6‐iPr2C6H3} with E[N(SiMe3)2]2(E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([MeBDIDipp]IrH)2(μ2‐E)2in good yields. Moreover, ([MeBDIDipp]IrH)2(μ2‐Ge)2was formed in situ from thermal decomposition of [MeBDIDipp]Ir(H)2Ge[N(SiMe3)2]2. These reactions are accompanied by liberation of HN(SiMe3)2and H2through the apparent cleavage of an E−N(SiMe3)2bond by Ir−H. In a reversal of this process, ([MeBDIDipp]IrH)2(μ2‐E)2reacted with excess H2to regenerate [MeBDIDipp]IrH4. Varying the concentrations of reactants led to formation of the trimeric ([MeBDIDipp]IrH2)3(μ2‐E)3. The further scope of this synthetic route was investigated with group 15 amides, and ([MeBDIDipp]IrH)2(μ2‐Bi)2was prepared by the reaction of [MeBDIDipp]IrH4with Bi(NMe2)3or Bi(OtBu)3to afford the first example of a “naked” two‐coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2E2(E=Sn, Pb) compounds characterized them as open‐shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2Bi2is characterized as having a closed‐shell singlet ground state.

     
    more » « less
  2. null (Ed.)
    HN(CH 2 CH 2 PR 2 ) 2 -ligated copper borohydride complexes, ( R PN H P)Cu(BH 4 ) (R = i Pr, Cy, t Bu), which can be prepared from ( R PN H P)CuBr and NaBH 4 , are capable of catalyzing the hydrogenation of aldehydes in an alcoholic solvent. More active hydrogenation catalysts are ( R PN H P)CuBr mixed with KO t Bu, allowing various aldehydes and ketones to be efficiently reduced to alcohols except those bearing a nitro, N -unprotected pyrrole, pyridine, or an ester group, or those prone to aldol condensation ( e.g. , 1-heptanal). Modifying the catalyst structure by replacing the NH group in ( i Pr PN H P)CuBr with an NMe group results in an inferior catalyst but preserves some catalytic activity. The hexanuclear copper hydride cluster, ( i Pr PN H P) 3 Cu 6 H 6 , is also competent in catalyzing the hydrogenation of aldehydes such as benzaldehyde and N -methyl-2-pyrrolecarboxaldehyde, albeit accompanied by decomposition pathways. The catalytic performance can be enhanced through the addition of a strong base or i Pr PN H P. The three catalytic systems likely share the same catalytically active species, which is proposed to be a mononuclear copper hydride ( R PN H P)CuH with the NH group bound to copper. 
    more » « less
  3. null (Ed.)
    We investigate the excited electron dynamics in [Au 25 (SR) 18 ] −1 (R = CH 3 , C 2 H 5 , C 3 H 7 , MPA, PET) [MPA = mercaptopropanoic acid, PET = phenylethylthiol] nanoparticles to understand how different ligands affect the excited state dynamics in this system. The population dynamics of the core and higher excited states lying in the energy range 0.00–2.20 eV are studied using a surface hopping method with decoherence correction in a real-time DFT approach. All of the ligated clusters follow a similar trend in decay for the core states (S 1 –S 6 ). The observed time constants are on the picosecond time scale (2–19 ps), which agrees with the experimental time scale, and this study confirms that the time constants observed experimentally could originate from core-to-core transitions and not from core-to-semiring transitions. In the presence of higher excited states, R = H, CH 3 , C 2 H 5 , C 3 H 7 , and PET demonstrate similar relaxations trends whereas R = MPA shows slightly different relaxation of the core states due to a smaller gap between the LUMO+1 and LUMO+2 gap in its electronic structure. The S 1 (HOMO → LUMO) state gives the slowest decay in all ligated clusters, while S 7 has a relatively long decay. Furthermore, separate electron and hole relaxations were performed on the [Au 25 (SCH 3 ) 18 ] −1 nanocluster to understand how independent electron and hole relaxations contribute to the overall relaxation dynamics. 
    more » « less
  4. Pure methane (CH 4 ) ices processed by energetic electrons under ultra-high vacuum conditions to simulate secondary electrons formed via galactic cosmic rays (GCRs) penetrating interstellar ice mantles have been shown to produce an array of complex hydrocarbons with the general formulae: C n H 2n+2 ( n = 4–8), C n H 2n ( n = 3–9), C n H 2n−2 ( n = 3–9), C n H 2n−4 ( n = 4–9), and C n H 2n−6 ( n = 6–7). By monitoring the in situ chemical evolution of the ice combined with temperature programmed desorption (TPD) studies and tunable single photon ionization coupled to a reflectron time-of-flight mass spectrometer, specific isomers of C 3 H 4 , C 3 H 6 , C 4 H 4 , and C 4 H 6 were probed. These experiments confirmed the synthesis of methylacetylene (CH 3 CCH), propene (CH 3 CHCH 2 ), cyclopropane (c-C 3 H 6 ), vinylacetylene (CH 2 CHCCH), 1-butyne (HCCC 2 H 5 ), 2-butyne (CH 3 CCCH 3 ), 1,2-butadiene (H 2 CCCH(CH 3 )), and 1,3-butadiene (CH 2 CHCHCH 2 ) with yields of 2.17 ± 0.95 × 10 −4 , 3.7 ± 1.5 × 10 −3 , 1.23 ± 0.77 × 10 −4 , 1.28 ± 0.65 × 10 −4 , 4.01 ± 1.98 × 10 −5 , 1.97 ± 0.98 × 10 −4 , 1.90 ± 0.84 × 10 −5 , and 1.41 ± 0.72 × 10 −4 molecules eV −1 , respectively. Mechanistic studies exploring the formation routes of methylacetylene, propene, and vinylacetylene were also conducted, and revealed the additional formation of the 1,2,3-butatriene isomer. Several of the above isomers, methylacetylene, propene, vinylacetylene, and 1,3-butadiene, have repeatedly been shown to be important precursors in the formation of polycyclic aromatic hydrocarbons (PAHs), but until now their interstellar synthesis has remained elusive. 
    more » « less
  5. The gas-phase reaction of the methylidyne (CH; X 2 Π) radical with dimethylacetylene (CH 3 CCCH 3 ; X 1 A 1g ) was studied at a collision energy of 20.6 kJ mol −1 under single collision conditions with experimental results merged with ab initio calculations of the potential energy surface (PES) and ab initio molecule dynamics (AIMD) simulations. The crossed molecular beam experiment reveals that the reaction proceeds barrierless via indirect scattering dynamics through long-lived C 5 H 7 reaction intermediate(s) ultimately dissociating to C 5 H 6 isomers along with atomic hydrogen with atomic hydrogen predominantly released from the methyl groups as verified by replacing the methylidyne with the D1-methylidyne reactant. AIMD simulations reveal that the reaction dynamics are statistical leading predominantly to p28 (1-methyl-3-methylenecyclopropene, 13%) and p8 (1-penten-3-yne, 81%) plus atomic hydrogen with a significant amount of available energy being channeled into the internal excitation of the polyatomic reaction products. The dynamics are controlled by addition to the carbon–carbon triple bond with the reaction intermediates eventually eliminating a hydrogen atom from the methyl groups of the dimethylacetylene reactant forming 1-methyl-3-methylenecyclopropene (p28). The dominating pathways reveal an unexpected insertion of methylidyne into one of the six carbon–hydrogen single bonds of the methyl groups of dimethylacetylene leading to the acyclic intermediate, which then decomposes to 1-penten-3-yne (p8). Therefore, the methyl groups of dimethylacetylene effectively ‘screen’ the carbon–carbon triple bond from being attacked by addition thus directing the dynamics to an insertion process as seen exclusively in the reaction of methylidyne with ethane (C 2 H 6 ) forming propylene (CH 3 C 2 H 3 ). Therefore, driven by the screening of the triple bond, one propynyl moiety (CH 3 CC) acts in four out of five trajectories as a spectator thus driving an unexpected, but dominating chemistry in analogy to the methylidyne – ethane system. 
    more » « less