skip to main content


Title: An improved algorithm for inferring mutational parameters from bar-seq evolution experiments
Abstract Background

Genetic barcoding provides a high-throughput way to simultaneously track the frequencies of large numbers of competing and evolving microbial lineages. However making inferences about the nature of the evolution that is taking place remains a difficult task.

Results

Here we describe an algorithm for the inference of fitness effects and establishment times of beneficial mutations from barcode sequencing data, which builds upon a Bayesian inference method by enforcing self-consistency between the population mean fitness and the individual effects of mutations within lineages. By testing our inference method on a simulation of 40,000 barcoded lineages evolving in serial batch culture, we find that this new method outperforms its predecessor, identifying more adaptive mutations and more accurately inferring their mutational parameters.

Conclusion

Our new algorithm is particularly suited to inference of mutational parameters when read depth is low. We have made Python code for our serial dilution evolution simulations, as well as both the old and new inference methods, available on GitHub (https://github.com/FangfeiLi05/FitMut2), in the hope that it can find broader use by the microbial evolution community.

 
more » « less
NSF-PAR ID:
10411865
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
BMC Genomics
Volume:
24
Issue:
1
ISSN:
1471-2164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background

    Developing appropriate computational tools to distill biological insights from large‐scale gene expression data has been an important part of systems biology. Considering that gene relationships may change or only exist in a subset of collected samples, biclustering that involves clustering both genes and samples has become in‐creasingly important, especially when the samples are pooled from a wide range of experimental conditions.

    Methods

    In this paper, we introduce a new biclustering algorithm to find subsets of genomic expression features (EFs) (e.g., genes, isoforms, exon inclusion) that show strong “group interactions” under certain subsets of samples. Group interactions are defined by strong partial correlations, or equivalently, conditional dependencies between EFs after removing the influences of a set of other functionally related EFs. Our new biclustering method, named SCCA‐BC, extends an existing method for group interaction inference, which is based on sparse canonical correlation analysis (SCCA) coupled with repeated random partitioning of the gene expression data set.

    Results

    SCCA‐BC gives sensible results on real data sets and outperforms most existing methods in simulations. Software is available athttps://github.com/pimentel/scca‐bc.

    Conclusions

    SCCA‐BC seems to work in numerous conditions and the results seem promising for future extensions. SCCA‐BC has the ability to find different types of bicluster patterns, and it is especially advantageous in identifying a bicluster whose elements share the same progressive and multivariate normal distribution with a dense covariance matrix.

     
    more » « less
  2. Abstract

    Unicellular organisms can engage in a process by which a cell purposefully destroys itself, termed programmed cell death (PCD). While it is clear that the death of specific cells within amulticellularorganism could increase inclusive fitness (e.g., during development), the origin of PCD inunicellularorganisms is less obvious. Kin selection has been shown to help maintain instances of PCD in existing populations of unicellular organisms; however, competing hypotheses exist about whether additional factors are necessary to explain its origin. Those factors could include an environmental shift that causes latent PCD to be expressed, PCD hitchhiking on a large beneficial mutation, and PCD being simply a common pathology. Here, we present results using an artificial life model to demonstrate that kin selection can, in fact, be sufficient to give rise to PCD in unicellular organisms. Furthermore, when benefits to kin are direct—that is, resources provided to nearby kin—PCD is more beneficial than when benefits are indirect—that is, nonkin are injured, thus increasing the relative amount of resources for kin. Finally, when considering how strict organisms are in determining kin or nonkin (in terms of mutations), direct benefits are viable in a narrower range than indirect benefits.

    Open Research Badges

    This article has been awarded Open Data and Open Materials Badges. All materials and data are publicly accessible via the Open Science Framework athttps://github.com/anyaevostinar/SuicidalAltruismDissertation/tree/master/LongTerm.

     
    more » « less
  3. Abstract

    We introduce the Weak-form Estimation of Nonlinear Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs. Without relying on any numerical differential equation solvers, WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise. For low dimensional systems with modest amounts of data, WENDy is competitive with conventional forward solver-based nonlinear least squares methods in terms of speed and accuracy. For both higher dimensional systems and stiff systems, WENDy is typically both faster (often by orders of magnitude) and more accurate than forward solver-based approaches. The core mathematical idea involves an efficient conversion of the strong form representation of a model to its weak form, and then solving a regression problem to perform parameter inference. The core statistical idea rests on the Errors-In-Variables framework, which necessitates the use of the iteratively reweighted least squares algorithm. Further improvements are obtained by using orthonormal test functions, created from a set of$$C^{\infty }$$Cbump functions of varying support sizes.We demonstrate the high robustness and computational efficiency by applying WENDy to estimate parameters in some common models from population biology, neuroscience, and biochemistry, including logistic growth, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark model. Software and code for reproducing the examples is available athttps://github.com/MathBioCU/WENDy.

     
    more » « less
  4. Abstract Background

    Crop improvement through cross-population genomic prediction and genome editing requires identification of causal variants at high resolution, within fewer than hundreds of base pairs. Most genetic mapping studies have generally lacked such resolution. In contrast, evolutionary approaches can detect genetic effects at high resolution, but they are limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Here we use genomic annotations to accurately predict nucleotide conservation across angiosperms, as a proxy for fitness effect of mutations.

    Results

    Using only sequence analysis, we annotate nonsynonymous mutations in 25,824 maize gene models, with information from bioinformatics and deep learning. Our predictions are validated by experimental information: within-species conservation, chromatin accessibility, and gene expression. According to gene ontology and pathway enrichment analyses, predicted nucleotide conservation points to genes in central carbon metabolism. Importantly, it improves genomic prediction for fitness-related traits such as grain yield, in elite maize panels, by stringent prioritization of fewer than 1% of single-site variants.

    Conclusions

    Our results suggest that predicting nucleotide conservation across angiosperms may effectively prioritize sites most likely to impact fitness-related traits in crops, without being limited by shifting selection, missing data, and low depth of multiple-sequence alignments. Our approach—Prediction of mutation Impact by Calibrated Nucleotide Conservation (PICNC)—could be useful to select polymorphisms for accurate genomic prediction, and candidate mutations for efficient base editing. The trained PICNC models and predicted nucleotide conservation at protein-coding SNPs in maize are publicly available in CyVerse (https://doi.org/10.25739/hybz-2957).

     
    more » « less
  5. de Visser, J. Arjan (Ed.)
    The rate of adaptive evolution depends on the rate at which beneficial mutations are introduced into a population and the fitness effects of those mutations. The rate of beneficial mutations and their expected fitness effects is often difficult to empirically quantify. As these 2 parameters determine the pace of evolutionary change in a population, the dynamics of adaptive evolution may enable inference of their values. Copy number variants (CNVs) are a pervasive source of heritable variation that can facilitate rapid adaptive evolution. Previously, we developed a locus-specific fluorescent CNV reporter to quantify CNV dynamics in evolving populations maintained in nutrient-limiting conditions using chemostats. Here, we use CNV adaptation dynamics to estimate the rate at which beneficial CNVs are introduced through de novo mutation and their fitness effects using simulation-based likelihood–free inference approaches. We tested the suitability of 2 evolutionary models: a standard Wright–Fisher model and a chemostat model. We evaluated 2 likelihood-free inference algorithms: the well-established Approximate Bayesian Computation with Sequential Monte Carlo (ABC-SMC) algorithm, and the recently developed Neural Posterior Estimation (NPE) algorithm, which applies an artificial neural network to directly estimate the posterior distribution. By systematically evaluating the suitability of different inference methods and models, we show that NPE has several advantages over ABC-SMC and that a Wright–Fisher evolutionary model suffices in most cases. Using our validated inference framework, we estimate the CNV formation rate at the GAP1 locus in the yeast Saccharomyces cerevisiae to be 10 −4.7 to 10 −4 CNVs per cell division and a fitness coefficient of 0.04 to 0.1 per generation for GAP1 CNVs in glutamine-limited chemostats. We experimentally validated our inference-based estimates using 2 distinct experimental methods—barcode lineage tracking and pairwise fitness assays—which provide independent confirmation of the accuracy of our approach. Our results are consistent with a beneficial CNV supply rate that is 10-fold greater than the estimated rates of beneficial single-nucleotide mutations, explaining the outsized importance of CNVs in rapid adaptive evolution. More generally, our study demonstrates the utility of novel neural network–based likelihood–free inference methods for inferring the rates and effects of evolutionary processes from empirical data with possible applications ranging from tumor to viral evolution. 
    more » « less