skip to main content


Title: Direct Estimation of Parameters in ODE Models Using WENDy: Weak-Form Estimation of Nonlinear Dynamics
Abstract

We introduce the Weak-form Estimation of Nonlinear Dynamics (WENDy) method for estimating model parameters for non-linear systems of ODEs. Without relying on any numerical differential equation solvers, WENDy computes accurate estimates and is robust to large (biologically relevant) levels of measurement noise. For low dimensional systems with modest amounts of data, WENDy is competitive with conventional forward solver-based nonlinear least squares methods in terms of speed and accuracy. For both higher dimensional systems and stiff systems, WENDy is typically both faster (often by orders of magnitude) and more accurate than forward solver-based approaches. The core mathematical idea involves an efficient conversion of the strong form representation of a model to its weak form, and then solving a regression problem to perform parameter inference. The core statistical idea rests on the Errors-In-Variables framework, which necessitates the use of the iteratively reweighted least squares algorithm. Further improvements are obtained by using orthonormal test functions, created from a set of$$C^{\infty }$$Cbump functions of varying support sizes.We demonstrate the high robustness and computational efficiency by applying WENDy to estimate parameters in some common models from population biology, neuroscience, and biochemistry, including logistic growth, Lotka-Volterra, FitzHugh-Nagumo, Hindmarsh-Rose, and a Protein Transduction Benchmark model. Software and code for reproducing the examples is available athttps://github.com/MathBioCU/WENDy.

 
more » « less
NSF-PAR ID:
10467813
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Bulletin of Mathematical Biology
Volume:
85
Issue:
11
ISSN:
0092-8240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It has been recently established in David and Mayboroda (Approximation of green functions and domains with uniformly rectifiable boundaries of all dimensions.arXiv:2010.09793) that on uniformly rectifiable sets the Green function is almost affine in the weak sense, and moreover, in some scenarios such Green function estimates are equivalent to the uniform rectifiability of a set. The present paper tackles a strong analogue of these results, starting with the “flagship degenerate operators on sets with lower dimensional boundaries. We consider the elliptic operators$$L_{\beta ,\gamma } =- {\text {div}}D^{d+1+\gamma -n} \nabla $$Lβ,γ=-divDd+1+γ-nassociated to a domain$$\Omega \subset {\mathbb {R}}^n$$ΩRnwith a uniformly rectifiable boundary$$\Gamma $$Γof dimension$$d < n-1$$d<n-1, the now usual distance to the boundary$$D = D_\beta $$D=Dβgiven by$$D_\beta (X)^{-\beta } = \int _{\Gamma } |X-y|^{-d-\beta } d\sigma (y)$$Dβ(X)-β=Γ|X-y|-d-βdσ(y)for$$X \in \Omega $$XΩ, where$$\beta >0$$β>0and$$\gamma \in (-1,1)$$γ(-1,1). In this paper we show that the Green functionGfor$$L_{\beta ,\gamma }$$Lβ,γ, with pole at infinity, is well approximated by multiples of$$D^{1-\gamma }$$D1-γ, in the sense that the function$$\big | D\nabla \big (\ln \big ( \frac{G}{D^{1-\gamma }} \big )\big )\big |^2$$|D(ln(GD1-γ))|2satisfies a Carleson measure estimate on$$\Omega $$Ω. We underline that the strong and the weak results are different in nature and, of course, at the level of the proofs: the latter extensively used compactness arguments, while the present paper relies on some intricate integration by parts and the properties of the “magical distance function from David et al. (Duke Math J, to appear).

     
    more » « less
  2. Abstract

    Given a suitable solutionV(tx) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$u(0,x)V(0,x)+H-1(R). Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$V(0,x)H5(R/Z)satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$V0. In that setting, it is known that$$H^{-1}(\mathbb {R})$$H-1(R)is sharp in the class of$$H^s(\mathbb {R})$$Hs(R)spaces.

     
    more » « less
  3. Abstract

    In this paper we disprove part of a conjecture of Lieb and Thirring concerning the best constant in their eponymous inequality. We prove that the best Lieb–Thirring constant when the eigenvalues of a Schrödinger operator$$-\Delta +V(x)$$-Δ+V(x)are raised to the power$$\kappa $$κis never given by the one-bound state case when$$\kappa >\max (0,2-d/2)$$κ>max(0,2-d/2)in space dimension$$d\ge 1$$d1. When in addition$$\kappa \ge 1$$κ1we prove that this best constant is never attained for a potential having finitely many eigenvalues. The method to obtain the first result is to carefully compute the exponentially small interaction between two Gagliardo–Nirenberg optimisers placed far away. For the second result, we study the dual version of the Lieb–Thirring inequality, in the same spirit as in Part I of this work Gontier et al. (The nonlinear Schrödinger equation for orthonormal functions I. Existence of ground states. Arch. Rat. Mech. Anal, 2021.https://doi.org/10.1007/s00205-021-01634-7). In a different but related direction, we also show that the cubic nonlinear Schrödinger equation admits no orthonormal ground state in 1D, for more than one function.

     
    more » « less
  4. Abstract

    We propose a new observable for the measurement of the forward–backward asymmetry$$(A_{FB})$$(AFB)in Drell–Yan lepton production. At hadron colliders, the$$A_{FB}$$AFBdistribution is sensitive to both the electroweak (EW) fundamental parameter$$\sin ^{2} \theta _{W}$$sin2θW, the weak mixing angle, and the parton distribution functions (PDFs). Hence, the determination of$$\sin ^{2} \theta _{W}$$sin2θWand the updating of PDFs by directly using the same$$A_{FB}$$AFBspectrum are strongly correlated. This correlation would introduce large bias or uncertainty into both precise measurements of EW and PDF sectors. In this article, we show that the sensitivity of$$A_{FB}$$AFBon$$\sin ^{2} \theta _{W}$$sin2θWis dominated by its average value around theZpole region, while the shape (or gradient) of the$$A_{FB}$$AFBspectrum is insensitive to$$\sin ^{2} \theta _{W}$$sin2θWand contains important information on the PDF modeling. Accordingly, a new observable related to the gradient of the spectrum is introduced, and demonstrated to be able to significantly reduce the potential bias on the determination of$$\sin ^{2} \theta _{W}$$sin2θWwhen updating the PDFs using the same$$A_{FB}$$AFBdata.

     
    more » « less
  5. Abstract

    New observational facilities are probing astrophysical transients such as stellar explosions and gravitational-wave sources at ever-increasing redshifts, while also revealing new features in source property distributions. To interpret these observations, we need to compare them to predictions from stellar population models. Such models require the metallicity-dependent cosmic star formation history ((Z,z)) as an input. Large uncertainties remain in the shape and evolution of this function. In this work, we propose a simple analytical function for(Z,z). Variations of this function can be easily interpreted because the parameters link to its shape in an intuitive way. We fit our analytical function to the star-forming gas of the cosmological TNG100 simulation and find that it is able to capture the main behavior well. As an example application, we investigate the effect of systematic variations in the(Z,z)parameters on the predicted mass distribution of locally merging binary black holes. Our main findings are that (i) the locations of features are remarkably robust against variations in the metallicity-dependent cosmic star formation history, and (ii) the low-mass end is least affected by these variations. This is promising as it increases our chances of constraining the physics that govern the formation of these objects (https://github.com/LiekeVanSon/SFRD_fit/tree/7348a1ad0d2ed6b78c70d5100fb3cd2515493f02/).

     
    more » « less