skip to main content


Title: Driver-Automated Vehicle Interaction in Mixed Traffic: Types of Interaction and Drivers’ Driving Styles
Objective This study investigated drivers’ subjective feelings and decision making in mixed traffic by quantifying driver’s driving style and type of interaction. Background Human-driven vehicles (HVs) will share the road with automated vehicles (AVs) in mixed traffic. Previous studies focused on simulating the impacts of AVs on traffic flow, investigating car-following situations, and using simulation analysis lacking experimental tests of human drivers. Method Thirty-six drivers were classified into three driver groups (aggressive, moderate, and defensive drivers) and experienced HV-AV interaction and HV-HV interaction in a supervised web-based experiment. Drivers’ subjective feelings and decision making were collected via questionnaires. Results Results revealed that aggressive and moderate drivers felt significantly more anxious, less comfortable, and were more likely to behave aggressively in HV-AV interaction than in HV-HV interaction. Aggressive drivers were also more likely to take advantage of AVs on the road. In contrast, no such differences were found for defensive drivers indicating they were not significantly influenced by the type of vehicles with which they were interacting. Conclusion Driving style and type of interaction significantly influenced drivers’ subjective feelings and decision making in mixed traffic. This study brought insights into how human drivers perceive and interact with AVs and HVs on the road and how human drivers take advantage of AVs. Application This study provided a foundation for developing guidelines for mixed transportation systems to improve driver safety and user experience.  more » « less
Award ID(s):
1850002
NSF-PAR ID:
10411874
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Human Factors: The Journal of the Human Factors and Ergonomics Society
ISSN:
0018-7208
Page Range / eLocation ID:
001872082210883
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Autonomous Vehicle (AV) technology has the potential to significantly improve driver safety. Unfortunately, driver could be reluctant to ride with AVs due to the lack of trust and acceptance of AV’s driving styles. The present study investigated the impact of driver’s driving style (aggressive/defensive) and the designed driving styles of AVs (aggressive/defensive) on driver’s trust, acceptance, and take-over behavior in fully autonomous vehicles. Thirty-two participants were classified into two groups based on their driving styles using the Aggressive Driving Scale and experienced twelve scenarios in either an aggressive AV or a defensive AV. Results revealed that drivers’ trust, acceptance, and takeover frequency were significantly influenced by the interaction effects between AV’s driving style and driver’s driving style. The findings implied that driver’s individual differences should be considered in the design of AV’s driving styles to enhance driver’s trust and acceptance of AVs and reduce undesired take over behaviors. 
    more » « less
  2. Objective

    This study investigated the impact of driving styles of drivers and automated vehicles (AVs) on drivers’ perception of automated driving maneuvers and quantified the relationships among drivers’ perception of AV maneuvers, driver trust, and acceptance of AVs.

    Background

    Previous studies on automated driving styles focused on the impact of AV’s global driving style on driver’s attitude and driving performance. However, research on drivers’ perception of automated driving maneuvers at the specific driving style level is still lacking.

    Method

    Sixteen aggressive drivers and sixteen defensive drivers were recruited to experience twelve driving scenarios in either an aggressive AV or a defensive AV on the driving simulator. Their perception of AV maneuvers, trust, and acceptance was measured via questionnaires, and driving performance was collected via the driving simulator.

    Results

    Results revealed that drivers’ trust and acceptance of AVs would decrease significantly if they perceived AVs to have a higher speed, larger deceleration, smaller deceleration, or shorter stopping distance than expected. Moreover, defensive drivers perceived significantly greater inappropriateness of these maneuvers from aggressive AVs than defensive AVs, whereas aggressive drivers didn’t differ significantly in their perceived inappropriateness of these maneuvers with different driving styles.

    Conclusion

    The driving styles of automated vehicles and drivers influenced drivers’ perception of automated driving maneuvers, which influence their trust and acceptance of AVs.

    Application

    This study suggested that the design of AVs should consider drivers’ perceptions of automated driving maneuvers to avoid undermining drivers’ trust and acceptance of AVs.

     
    more » « less
  3. Autonomous vehicles (AV) hold great potential to increase road safety, reduce traffic congestion, and improve mobility systems. However, the deployment of AVs introduces new liability challenges when they are involved in car accidents. A new legal framework should be developed to tackle such a challenge. This paper proposes a legal framework, incorporating liability rules to rear-end crashes in mixed-traffic platoons with AVs and human-propelled vehicles (HV). We leverage a matrix game approach to understand interactions among players whose utility captures crash loss for drivers according to liability rules. We investigate how liability rules may impact the game equilibrium between vehicles and whether human drivers’ moral hazards arise if liability is not designed properly. We find that compared to the no-fault liability rule, contributory and comparative rules make road users have incentives to execute a smaller reaction time to improve road safety. There exists moral hazards for human drivers when risk-averse AV players are in the car platoon.

     
    more » « less
  4. Despite the potential of autonomous vehicles (AV) to improve traffic efficiency and safety, many studies have shown that traffic accidents in a hybrid traffic environment where both AV and human-driven vehicles (HVs) are present are inevitable because of the unpredictability of HVs. Given that eliminating accidents is impossible, an achievable goal is to design AVs in a way so that they will not be blamed for any accident in which they are involved in. In this paper, we propose BlaFT Rules – or Blame-Free hybrid Traffic motion planning Rules. An AV following BlaFT Rules is designed to be cooperative with HVs as well as other AVs, and will not be blamed for accidents in a structured road environment. We provide proofs that no accidents will happen if all AVs are using a BlaFT Rules conforming motion planner, and that an AV using BlaFT Rules will be blame-free even if it is involved in a collision in hybrid traffic. We implemented a motion planning algorithm that conforms to BlaFT Rules called BlaFT. We instantiated scores of BlaFT controlled AVs and HVs in an urban roadscape loop in the SUMO simulator and show that over time that as the percentage of BlaFT vehicles increases, the traffic becomes safer even with HVs involved. Adding BlaFT vehicles increases the efficiency of traffic as a whole by up to 34% over HVs alone. 
    more » « less
  5. The Intelligent Driver Model (IDM) is one of the widely used car-following models to represent human drivers in mixed traffic simulations. However, the standard IDM performs too well in energy efficiency and comfort (acceleration) compared with real-world human drivers. In addition, many studies assessed the performance of automated vehicles interacting with human-driven vehicles (HVs) in mixed traffic where IDM serves as HVs based on the assumption that the IDM represents an intelligent human driver that performs not better than automated vehicles (AVs). When a commercially available control system of AVs, Adaptive Cruise Control (ACC), is compared with the standard IDM, it is found that the standard IDM generally outperforms ACC in fuel efficiency and comfort, which is not logical in an evaluation of any advanced control logic with mixed traffic. To ensure the IDM reasonably mimics human drivers, a dynamic safe time headway concept is proposed and evaluated. A real-world NGSIM data set is utilized as the human drivers for simulation-based comparisons. The results indicate that the performance of the IDM with dynamic time headway is much closer to human drivers and worse than the ACC system as expected. 
    more » « less