Objective This study investigated drivers’ subjective feelings and decision making in mixed traffic by quantifying driver’s driving style and type of interaction. Background Human-driven vehicles (HVs) will share the road with automated vehicles (AVs) in mixed traffic. Previous studies focused on simulating the impacts of AVs on traffic flow, investigating car-following situations, and using simulation analysis lacking experimental tests of human drivers. Method Thirty-six drivers were classified into three driver groups (aggressive, moderate, and defensive drivers) and experienced HV-AV interaction and HV-HV interaction in a supervised web-based experiment. Drivers’ subjective feelings and decision making were collected via questionnaires. Results Results revealed that aggressive and moderate drivers felt significantly more anxious, less comfortable, and were more likely to behave aggressively in HV-AV interaction than in HV-HV interaction. Aggressive drivers were also more likely to take advantage of AVs on the road. In contrast, no such differences were found for defensive drivers indicating they were not significantly influenced by the type of vehicles with which they were interacting. Conclusion Driving style and type of interaction significantly influenced drivers’ subjective feelings and decision making in mixed traffic. This study brought insights into how human drivers perceive and interact with AVs and HVs on the road and how human drivers take advantage of AVs. Application This study provided a foundation for developing guidelines for mixed transportation systems to improve driver safety and user experience. 
                        more » 
                        « less   
                    This content will become publicly available on March 24, 2026
                            
                            Heterogeneous Decision Making in Mixed Traffic: Uncertainty-aware Planning and Bounded Rationality
                        
                    
    
            The past few years have witnessed a rapid growth of the deployment of automated vehicles (AVs). Clearly, AVs and human-driven vehicles (HVs) will co-exist for many years, and AVs will have to operate around HVs, pedestrians, cyclists, and more, calling for fundamental breakthroughs in AI designed for mixed traffic to achieve mixed autonomy. Thus motivated, we study heterogeneous decision making by AVs and HVs in a mixed traffic environment, aiming to capture the interactions between human and machine decision-making and develop an AI foundation that enables vehicles to operate safely and efficiently. There are a number of challenges to achieve mixed autonomy, including 1) humans drivers make driving decisions with bounded rationality, and it remains open to develop accurate models for HVs' decision making; and 2) uncertainty-aware planning plays a critical role for AVs to take safety maneuvers in response to the human behavior. In this paper, we introduce a formulation of AV-HV interaction, where the HV makes decisions with bounded rationality and the AV employs uncertainty-aware planning based on the prediction on HV's future actions. We conduct a comprehensive analysis on AV and HV's learning regret to answer the questions: 1) How does the learning performance depend on HV's bounded rationality and AV's planning; 2) How do different decision making strategies impact the overall learning performance? Our findings reveal some intriguing phenomena, such as Goodhart's Law in AV's learning performance and compounding effects in HV's decision making process. By examining the dynamics of the regrets, we gain insights into the interplay between human and machine decision making. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2413529
- PAR ID:
- 10612096
- Editor(s):
- Candes, Emmanuel; Ma, Yi
- Publisher / Repository:
- https://cpal.cc/
- Date Published:
- Issue:
- 2
- ISBN:
- 978-1-7138-9865-8
- Subject(s) / Keyword(s):
- machine learning, signal processing, optimization
- Format(s):
- Medium: X
- Location:
- Stanford, CA 94305
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Despite the potential of autonomous vehicles (AV) to improve traffic efficiency and safety, many studies have shown that traffic accidents in a hybrid traffic environment where both AV and human-driven vehicles (HVs) are present are inevitable because of the unpredictability of HVs. Given that eliminating accidents is impossible, an achievable goal is to design AVs in a way so that they will not be blamed for any accident in which they are involved in. In this paper, we propose BlaFT Rules – or Blame-Free hybrid Traffic motion planning Rules. An AV following BlaFT Rules is designed to be cooperative with HVs as well as other AVs, and will not be blamed for accidents in a structured road environment. We provide proofs that no accidents will happen if all AVs are using a BlaFT Rules conforming motion planner, and that an AV using BlaFT Rules will be blame-free even if it is involved in a collision in hybrid traffic. We implemented a motion planning algorithm that conforms to BlaFT Rules called BlaFT. We instantiated scores of BlaFT controlled AVs and HVs in an urban roadscape loop in the SUMO simulator and show that over time that as the percentage of BlaFT vehicles increases, the traffic becomes safer even with HVs involved. Adding BlaFT vehicles increases the efficiency of traffic as a whole by up to 34% over HVs alone.more » « less
- 
            Autonomous vehicles (AV) hold great potential to increase road safety, reduce traffic congestion, and improve mobility systems. However, the deployment of AVs introduces new liability challenges when they are involved in car accidents. A new legal framework should be developed to tackle such a challenge. This paper proposes a legal framework, incorporating liability rules to rear-end crashes in mixed-traffic platoons with AVs and human-propelled vehicles (HV). We leverage a matrix game approach to understand interactions among players whose utility captures crash loss for drivers according to liability rules. We investigate how liability rules may impact the game equilibrium between vehicles and whether human drivers’ moral hazards arise if liability is not designed properly. We find that compared to the no-fault liability rule, contributory and comparative rules make road users have incentives to execute a smaller reaction time to improve road safety. There exists moral hazards for human drivers when risk-averse AV players are in the car platoon.more » « less
- 
            The Intelligent Driver Model (IDM) is one of the widely used car-following models to represent human drivers in mixed traffic simulations. However, the standard IDM performs too well in energy efficiency and comfort (acceleration) compared with real-world human drivers. In addition, many studies assessed the performance of automated vehicles interacting with human-driven vehicles (HVs) in mixed traffic where IDM serves as HVs based on the assumption that the IDM represents an intelligent human driver that performs not better than automated vehicles (AVs). When a commercially available control system of AVs, Adaptive Cruise Control (ACC), is compared with the standard IDM, it is found that the standard IDM generally outperforms ACC in fuel efficiency and comfort, which is not logical in an evaluation of any advanced control logic with mixed traffic. To ensure the IDM reasonably mimics human drivers, a dynamic safe time headway concept is proposed and evaluated. A real-world NGSIM data set is utilized as the human drivers for simulation-based comparisons. The results indicate that the performance of the IDM with dynamic time headway is much closer to human drivers and worse than the ACC system as expected.more » « less
- 
            Eco-driving has garnered considerable research attention owing to its potential socio-economic impact, including enhanced public health and mitigated climate change effects through the reduction of greenhouse gas emissions. With an expectation of more autonomous vehicles (AVs) on the road, an eco-driving strategy in hybrid traffic networks encompassing AV and human-driven vehicles (HDVs) with the coordination of traffic lights is a challenging task. The challenge is partially due to the insufficient infrastructure for collecting, transmitting, and sharing real-time traffic data among vehicles, facilities, and traffic control centers, and the following decision-making of agents involved in traffic control. Additionally, the intricate nature of the existing traffic network, with its diverse array of vehicles and facilities, contributes to the challenge by hindering the development of a mathematical model for accurately characterizing the traffic network. In this study, we utilized the Simulation of Urban Mobility (SUMO) simulator to tackle the first challenge through computational analysis. To address the second challenge, we employed a model-free reinforcement learning (RL) algorithm, proximal policy optimization, to decide the actions of AV and traffic light signals in a traffic network. A novel eco-driving strategy was proposed by introducing different percentages of AV into the traffic flow and collaborating with traffic light signals using RL to control the overall speed of the vehicles, resulting in improved fuel consumption efficiency. Average rewards with different penetration rates of AV (5%, 10%, and 20% of total vehicles) were compared to the situation without any AV in the traffic flow (0% penetration rate). The 10% penetration rate of AV showed a minimum time of convergence to achieve average reward, leading to a significant reduction in fuel consumption and total delay of all vehicles.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
