The retreat of the Antarctic Ice Sheet is conventionally attributed to increased ocean melting of ice shelves, potentially enhanced by internal instability from grounding lines near retrograde bed slopes. Ocean melting is enhanced by increased intrusion of modified Circumpolar Deep Water (mCDW) into ice shelf cavities. Upwelling from the release of subglacial meltwater can enhance mCDW’s melting ability, though its efficacy is not well understood and is not represented in current ice sheet loss projections. Here we quantify this process during an exceptional subglacial lake drainage event under Thwaites Glacier. We found that the buoyant plume from the subglacial discharge temporarily doubled the rate of ocean melting under Thwaites, thinning the ice shelf. These events likely contributed to Thwaites’ rapid thinning and grounding line retreat during that period. However, simulations and observations indicate that a steady subglacial water release would more efficiently enhance basal melt rates at Thwaites, with melt rate increasing like the square root of the subglacial discharge. Thus, it remains unclear whether increased subglacial flooding events provide a stabilizing influence on West Antarctic ice loss by reducing the impact of subglacial water on ocean melting, or a destabilizing influence by triggering rapid changes at the grounding zone.
- PAR ID:
- 10411902
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature
- Volume:
- 614
- Issue:
- 7948
- ISSN:
- 0028-0836
- Page Range / eLocation ID:
- 479 to 485
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Thwaites Glacier is one of the fastest‐changing ice‐ocean systems in Antarctica. Basal melting beneath Thwaites' floating ice shelf, especially around pinning points and at the grounding line, sets the rate of ice loss and Thwaites' contribution to global sea‐level rise. The rate of basal melting is controlled by the transport of heat into and through the ice–ocean boundary layer toward the ice base. Here we present the first turbulence observations from the grounding line of Thwaites Eastern Ice Shelf. We demonstrate that contrary to expectations, the turbulence‐driven vertical flux of heat into the ice–ocean boundary layer is insufficient to sustain the basal melt rate. Instead, most of the heat required must be delivered by lateral fluxes driven by the large‐scale advective circulation. Lateral processes likely dominate beneath the most unstable warm‐cavity ice shelves, and thus must be fully incorporated into parameterizations of ice shelf basal melting.
-
Abstract. Antarctic ice shelves buttress the flow of the ice sheet but are vulnerable to increased basal melting from contact with a warming ocean and increased mass loss from calving due to changing flow patterns. Channels and similar features at the bases of ice shelves have been linked to enhanced basal melting and observed to intersect the grounding zone, where the greatest melt rates are often observed. The ice shelf of Thwaites Glacier is especially vulnerable to basal melt and grounding zone retreat because the glacier has a retrograde bed leading to a deep trough below the grounded ice sheet. We use digital surface models from 2010–2022 to investigate the evolution of its ice-shelf channels, grounding zone position, and the interactions between them. We find that the highest sustained rates of grounding zone retreat (up to 0.7 km yr−1) are associated with high basal melt rates (up to ∼250 m yr−1) and are found where ice-shelf channels intersect the grounding zone, especially atop steep local retrograde slopes where subglacial channel discharge is expected. We find no areas with sustained grounding zone advance, although some secular retreat was distal from ice-shelf channels. Pinpointing other locations with similar risk factors could focus assessments of vulnerability to grounding zone retreat.
-
Abstract Totten Glacier is a fast‐moving East Antarctic outlet with the potential for significant future sea‐level contributions. We deployed four autonomous phase‐sensitive radars on its ice shelf to monitor ice‐ocean interactions near its grounding zone and made active source seismic observations to constrain gravity‐derived bathymetry models. We observe an asymmetry in basal melting with mean melt rates along the grounding zone differing by up to 20 m/a. Our new bathymetry model reveals that this melt rate asymmetry coincides with an asymmetry in water column thickness and that the low‐melting ice‐shelf portion is shielded from the main cavity circulation. A 2‐year record yields year‐to‐year melt rate variability of 7–9 m/a with no seasonal cycle. Our results highlight the key role of bathymetry near grounding lines for accurate modeling of ice‐shelf melt, and the importance of sustained multi‐year monitoring, especially at ice‐shelf cavities where the dominant melt rate drivers vary primarily inter‐annually.
-
Abstract Thwaites Glacier represents 15% of the ice discharge from the West Antarctic Ice Sheet and influences a wider catchment 1–3 . Because it is grounded below sea level 4,5 , Thwaites Glacier is thought to be susceptible to runaway retreat triggered at the grounding line (GL) at which the glacier reaches the ocean 6,7 . Recent ice-flow acceleration 2,8 and retreat of the ice front 8–10 and GL 11,12 indicate that ice loss will continue. The relative impacts of mechanisms underlying recent retreat are however uncertain. Here we show sustained GL retreat from at least 2011 to 2020 and resolve mechanisms of ice-shelf melt at the submetre scale. Our conclusions are based on observations of the Thwaites Eastern Ice Shelf (TEIS) from an underwater vehicle, extending from the GL to 3 km oceanward and from the ice–ocean interface to the sea floor. These observations show a rough ice base above a sea floor sloping upward towards the GL and an ocean cavity in which the warmest water exceeds 2 °C above freezing. Data closest to the ice base show that enhanced melting occurs along sloped surfaces that initiate near the GL and evolve into steep-sided terraces. This pronounced melting along steep ice faces, including in crevasses, produces stratification that suppresses melt along flat interfaces. These data imply that slope-dependent melting sculpts the ice base and acts as an important response to ocean warming.more » « less