skip to main content


Search for: All records

Award ID contains: 1929991

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Atmospheric rivers (ARs) are efficient mechanisms for transporting atmospheric moisture from low latitudes to the Antarctic Ice Sheet (AIS). While AR events occur infrequently, they can lead to extreme precipitation and surface melt events on the AIS. Here we estimate the contribution of ARs to total Antarctic precipitation, by combining precipitation from atmospheric reanalyses and a polar‐specific AR detection algorithm. We show that ARs contribute substantially to Antarctic precipitation, especially in East Antarctica at elevations below 3,000 m. ARs contribute substantially to year‐to‐year variability in Antarctic precipitation. Our results highlight that ARs are an important component for understanding present and future Antarctic mass balance trends and variability.

     
    more » « less
  2. Abstract

    Understanding the recent history of Thwaites Glacier, and the processes controlling its ongoing retreat, is key to projecting Antarctic contributions to future sea-level rise. Of particular concern is how the glacier grounding zone might evolve over coming decades where it is stabilized by sea-floor bathymetric highs. Here we use geophysical data from an autonomous underwater vehicle deployed at the Thwaites Glacier ice front, to document the ocean-floor imprint of past retreat from a sea-bed promontory. We show patterns of back-stepping sedimentary ridges formed daily by a mechanism of tidal lifting and settling at the grounding line at a time when Thwaites Glacier was more advanced than it is today. Over a duration of 5.5 months, Thwaites grounding zone retreated at a rate of >2.1 km per year—twice the rate observed by satellite at the fastest retreating part of the grounding zone between 2011 and 2019. Our results suggest that sustained pulses of rapid retreat have occurred at Thwaites Glacier in the past two centuries. Similar rapid retreat pulses are likely to occur in the near future when the grounding zone migrates back off stabilizing high points on the sea floor.

     
    more » « less
  3. Abstract

    High snowfall events on Thwaites Glacier (TG, West Antarctica) are a key influencer of its mass balance, and can act to mitigate sea level rise due to ocean warming‐induced ice loss. We use the output of a high‐resolution regional climate model, RACMO2, in conjunction with MERRA‐2 and ERA5 atmospheric reanalyses for the period 1980–2015 and show that there is a pronounced seasonal cycle in snowfall over TG, driven by the Amundsen Sea Low (ASL). We find that the total annual snowfall does not correlate significantly with the Southern Annular Mode or El Niño Southern Oscillation, but it does relate to the zonal wave three pattern over Antarctica through the coupling of the ASL with a blocking high over the Antarctic Peninsula during high snowfall events. Our results highlight that atmospheric circulation and consequent high snowfall events on TG are highly variable, and recognizing their future change will aid to improve predictions of mass balance.

     
    more » « less
  4. Abstract

    Determining the injection of glacial meltwater into polar oceans is crucial for quantifying the climate system response to ice sheet mass loss. However, meltwater is poorly observed and its pathways poorly known, especially in winter. Here we present winter meltwater distribution near Pine Island Glacier using data collected by tagged seals, revealing a highly variable meltwater distribution with two meltwater-rich layers in the upper 250 m and at around 450 m, connected by scattered meltwater-rich columns. We show that the hydrographic signature of meltwater is clearest in winter, when its presence can be unambiguously mapped. We argue that the buoyant meltwater provides near-surface heat that helps to maintain polynyas close to ice shelves. The meltwater feedback onto polynyas and air-sea heat fluxes demonstrates that although the processes determining the distribution of meltwater are small-scale, they are important to represent in Earth system models.

     
    more » « less
  5. Abstract

    Widespread ice shelf thinning has been recorded in the Amundsen Sea in recent decades, driven by basal melting and intrusions of relatively warm Circumpolar Deep Water (CDW) onto the continental shelf. The Dotson Ice Shelf (DIS) is located to the south of the Amundsen Sea polynya, and has a high basal melting rate because modified CDW (mCDW) fills the Dotson‐Getz Trough (DGT) and reaches the base of the ice shelf. Here, hydrographic data in the DGT obtained during seven oceanographic surveys from 2007 to 2018 were used to study the interannual variation in mCDW volume and properties and their causes. Although mCDW volume showed relatively weak interannual variations at the continental shelf break, these variations intensified southward and reached a maximum in front of the DIS. There, the mCDW volume was ∼8,000 km3in 2007, rapidly decreased to 4,700 km3in 2014 before rebounding to 7,300 km3in 2018. We find that such interannual variability is coherent with local Ekman pumping integrated along the DGT modulated by the presence of sea ice, and complementing earlier theories involving shelf break winds only. The interannual variability in strength of the dominant south‐southeast coastal wind modulates the amplitude of Ekman upwelling along the eastern boundary of the Amundsen Sea polynya during the austral summers of the surveyed years, apparently leading to change in the volume of mCDW along the DGT. We note a strong correlation between the wind variability and the longitudinal location of the Amundsen Sea Low.

     
    more » « less
  6. Basal channels, which are troughs carved into the undersides of ice shelves by buoyant plumes of water, are modulators of ice-shelf basal melt and structural stability. In this study, we track the evolution of 12 large basal channels beneath ice shelves of the Amundsen and Bellingshausen seas region in West Antarctica using the Landsat record since its start in the 1970s through 2020. We observe examples of channel growth, interactions with ice-shelf features, and systematic changes in sinuosity that give insight into the life cycles of basal channels. We use the last two decades of the record, combined with contemporary ice-flow velocity datasets, to separate channel-path evolution into components related to advection by ice flow and those controlled by other forcings, such as ocean melt or surface accumulation. Our results show that ice-flow-independent lateral channel migration is overwhelmingly to the left when viewed down-flow, suggesting that it is dominated by Coriolis-influenced ocean melt. By applying a model of channel-path evolution dominantly controlled by ice flow and ocean melt, we show that the majority of channels surveyed exhibit non-steady behavior that serves as a novel proxy for increased ocean forcing in West Antarctica starting at least in the early 1970s. 
    more » « less
    Free, publicly-accessible full text available March 19, 2025
  7. Abstract. In late March 2011, landfast sea ice (hereafter, “fast ice”) formed in the northern Larsen B embayment and persisted continuously as multi-year fast ice until January 2022. In the 11 years of fast-ice presence, the northern Larsen B glaciers slowed significantly, thickened in their lower reaches, and developed extensive mélange areas, leading to the formation of ice tongues that extended up to 16 km from the 2011 ice fronts. In situ measurements of ice speed on adjacent ice shelf areas spanning 2011 to 2017 show that the fast ice provided significant resistive stress to ice flow. Fast-ice breakout began in late January 2022 and was closely followed by retreat and breakup of both the fast-ice mélange and the glacier ice tongues. We investigate the probable triggers for the loss of fast ice and document the initial upstream glacier responses. The fast-ice breakup is linked to the arrival of a strong ocean swell event (>1.5 m amplitude; wave period waves >5 s) originating from the northeast. Wave propagation to the ice front was facilitated by a 12-year low in sea ice concentration in the northwestern Weddell Sea, creating a near-ice-free corridor to the open ocean. Remote sensing data in the months following the fast-ice breakout reveals an initial ice flow speed increase (>2-fold), elevation loss (9 to 11 m), and rapid calving of floating and grounded ice for the three main embayment glaciers Crane (11 km), Hektoria (25 km), and Green (18 km).

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  8. Abstract Basal channels, which form where buoyant plumes of ocean water and meltwater carve troughs upwards into ice-shelf bases, are widespread on Antarctic ice shelves. The formation of these features modulates ice-shelf basal melt by influencing the flow of buoyant plumes, and influences structural stability through concentration of strain and interactions with fractures. Because of these effects, and because basal channels can change rapidly, on timescales similar to those of ice-shelf evolution, constraining the impacts of basal channels on ice shelves is necessary for predicting future ice-shelf destabilization and retreat. We suggest that future research priorities should include constraining patterns and rates of basal channel change, determining mechanisms and detailed patterns of basal melt, and quantifying the influence that channel-related fractures have on ice-shelf stability. 
    more » « less
  9. Ice tongues at the fringes of the Antarctic ice sheet lose mass primarily through both basal melting and calving. They are sensitive to ocean conditions which can weaken the ice both mechanically or through thinning. Ice tongues, which are laterally unconfined, are likely to be particularly sensitive to ocean-induced stresses. Here we examine ice tongues in the Western Ross Sea, by looking into the factors affecting their stability. We calculate the basal mass change of twelve Antarctic ice tongues using a flux gate approach, deriving thickness from ICESat-2 height measurements and ice surface velocities from Sentinel-1 feature-tracking over the same period (October 2018 to December 2021). The basal mass balance ranges between −0.14 ± 0.07 m yr −1 and −1.50 ± 1.2 m yr −1 . The average basal mass change for all the ice tongues is −0.82 ± 0.68 m of ice yr −1 . Low values of basal melt suggest a stable mass balance condition in this region, with low thermal ocean forcing, as other studies have shown. We found a heterogeneous basal melt pattern with no latitudinal gradient and no clear driver in basal melt indicating that local variables are important in the persistence of ice tongues in the absence of a strong oceanographic melting force. Moreover, thanks to the temporal resolution of the data we were able to resolve the seasonal variability of Drygalski and Aviator Ice Tongues, the two largest ice tongues studied. 
    more » « less
  10. Abstract Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica 1–3 . Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland 4 , making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre 2,3,5 . The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat 3,6 , both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base 7,8 , resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates. 
    more » « less