skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decentralized Resilient State-Tracking
We study the decentralized resilient state-tracking problem in which each node in a network has the objective of tracking the state of a linear dynamical system based on its local measurements and information exchanged with its neighboring nodes, despite an attack on some of the nodes. We propose a novel algorithm that solves the decentralized resilient state-tracking problem by relating it to the dynamic average consensus problem. Compared with existing solutions in the literature, our algorithm provides a solution for the most general class of decentralized resilient state-tracking problem instances.  more » « less
Award ID(s):
1705135
PAR ID:
10411911
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2021 60th IEEE Conference on Decision and Control (CDC)
Page Range / eLocation ID:
3480 to 3485
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the problem of decentralized learning in the presence of data poisoning attacks. In this problem, we consider a collection of nodes connected through a network, each equipped with a local function. The objective is to compute the global minimizer of the aggregated local functions, in a decentralized manner, i.e., each node can only use its local function and data exchanged with nodes it is connected to. Moreover, each node is to agree on the said minimizer despite an adversary that can arbitrarily change the local functions of a fraction of the nodes. This problem setting has applications in robust learning, where nodes in a network are collectively training a model that minimizes the empirical loss with possibly attacked local data sets. In this paper, we propose a novel decentralized learning algorithm that enables all nodes to reach consensus on the optimal model, in the absence of attacks, and approximate consensus in the presence of data poisoning attacks. 
    more » « less
  2. We address the problem of distributed state estimation of a linear dynamical process in an attack-prone environment. A network of sensors, some of which can be compromised by adversaries, aim to estimate the state of the process. In this context, we investigate the impact of making a small subset of the nodes immune to attacks, or “trusted”. Given a set of trusted nodes, we identify separate necessary and sufficient conditions for resilient distributed state estimation. We use such conditions to illustrate how even a small trusted set can achieve a desired degree of robustness (where the robustness metric is specific to the problem under consideration) that could otherwise only be achieved via additional measurement and communication-link augmentation. We then establish that, unfortunately, the problem of selecting trusted nodes is NP-hard. Finally, we develop an attack-resilient, provably-correct distributed state estimation algorithm that appropriately leverages the presence of the trusted nodes. 
    more » « less
  3. null (Ed.)
    In this paper, we study communication-efficient decentralized training of large-scale machine learning models over a network. We propose and analyze SQuARM-SGD, a decentralized training algorithm, employing momentum and compressed communication between nodes regulated by a locally computable triggering rule. In SQuARM-SGD, each node performs a fixed number of local SGD (stochastic gradient descent) steps using Nesterov's momentum and then sends sparisified and quantized updates to its neighbors only when there is a significant change in its model parameters since the last time communication occurred. We provide convergence guarantees of our algorithm for strongly-convex and non-convex smooth objectives. We believe that ours is the first theoretical analysis for compressed decentralized SGD with momentum updates. We show that SQuARM-SGD converges at rate O(1/nT) for strongly-convex objectives, while for non-convex objectives it converges at rate O(1/√nT), thus matching the convergence rate of \emphvanilla distributed SGD in both these settings. We corroborate our theoretical understanding with experiments and compare the performance of our algorithm with the state-of-the-art, showing that without sacrificing much on the accuracy, SQuARM-SGD converges at a similar rate while saving significantly in total communicated bits. 
    more » « less
  4. Extensive literature exists studying decentralized coordination and consensus, with considerable attention devoted to ensuring robustness to faults and attacks. However, most of the latter literature assumes that non-malicious agents follow simple stylized rules. In reality, decentralized protocols often involve humans, and understanding how people coordinate in adversarial settings is an open problem. We initiate a study of this problem, starting with a human subjects investigation of human coordination on networks in the presence of adversarial agents, and subsequently using the resulting data to bootstrap the development of a credible agent-based model of adversarial decentralized coordination. In human subjects experiments, we observe that while adversarial nodes can successfully prevent consensus, the ability to communicate can significantly improve robustness, with the impact particularly significant in scale-free networks. On the other hand, and contrary to typical stylized models of behavior, we show that the existence of trusted nodes has limited utility. Next, we use the data collected in human subject experiments to develop a data-driven agent-based model of adversarial coordination. We show that this model successfully reproduces observed behavior in experiments, is robust to small errors in individual agent models, and illustrate its utility by using it to explore the impact of optimizing network location of trusted and adversarial nodes. 
    more » « less
  5. This work studies our recently developed decentralized algorithm, decentralized alternating projected gradient descent algorithm, called Dec-AltProjGDmin, for solving the following low-rank (LR) matrix recovery problem: recover an LR matrix from independent column-wise linear projections (LR column-wise Compressive Sensing). In recent work, we presented constructive convergence guarantees for Dec-AltProjGDmin under simple assumptions. By "constructive", we mean that the convergence time lower bound is provided for achieving any error level ε. However, our guarantee was stated for the equal neighbor consensus algorithm (at each iteration, each node computes the average of the data of all its neighbors) while most existing results do not assume the use of a specific consensus algorithm, but instead state guarantees in terms of the weights matrix eigenvalues. In order to compare with these results, we first modify our result to be in this form. Our second and main contribution is a theoretical and experimental comparison of our new result with the best existing one from the decentralized GD literature that also provides a convergence time bound for values of ε that are large enough. The existing guarantee is for a different problem setting and holds under different assumptions than ours and hence the comparison is not very clear cut. However, we are not aware of any other provably correct algorithms for decentralized LR matrix recovery in any other settings either. 
    more » « less