skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Motivational Interviewing Strategies on an Online Peer-to-Peer Counseling Platform
Millions of people participate in online peer-to-peer support sessions, yet there has been little prior research on systematic psychology-based evaluations of fine-grained peer-counselor behavior in relation to client satisfaction. This paper seeks to bridge this gap by mapping peer-counselor chat-messages to motivational interviewing (MI) techniques. We annotate 14,797 utterances from 734 chat conversations using 17 MI techniques and introduce four new interviewing codes such as ''chit-chat'' and ''inappropriate'' to account for the unique conversational patterns observed on online platforms. We automate the process of labeling peer-counselor responses to MI techniques by fine-tuning large domain-specific language models and then use these automated measures to investigate the behavior of the peer counselors via correlational studies. Specifically, we study the impact of MI techniques on the conversation ratings to investigate the techniques that predict clients' satisfaction with their counseling sessions. When counselors use techniques such as reflection and affirmation, clients are more satisfied. Examining volunteer counselors' change in usage of techniques suggest that counselors learn to use more introduction and open questions as they gain experience. This work provides a deeper understanding of the use of motivational interviewing techniques on peer-to-peer counselor platforms and sheds light on how to build better training programs for volunteer counselors on online platforms.  more » « less
Award ID(s):
2247357
PAR ID:
10411932
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
6
Issue:
CSCW2
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Online peer-to-peer therapy sessions can be effective in improving people's mental well-being. However, online volunteer counselors may lack the expertise and necessary training to provide high-quality sessions, and these low-quality sessions may negatively impact volunteers' motivations as well as clients' well-being. This paper uses interviews with 20 senior online volunteer counselors to examine how they addressed challenges and acquired skills when volunteering in a large, mental-health support community - 7Cups.com. Although volunteers in this community received some training based on principles of active listening and motivational interviewing, results indicate that the training was insufficient and that volunteer counselors had to independently develop strategies to deal with specific challenges that they encountered in their volunteer work. Their strategies, however, might deviate from standard practice since they generally lacked systematic feedback from mentors or clients and, instead, relied on their personal experiences. Additionally, volunteer counselors reported having difficulty maintaining their professional boundaries with the clients. Even though training and support resources were available, they were underutilized. The results of this study have uncovered new design spaces for HCI practitioners and researchers, including social computing and artificial intelligence approaches that may provide better support to volunteer counselors in online mental health communities. 
    more » « less
  2. Millions of users come to online peer counseling platforms to seek support on diverse topics ranging from relationship stress to anxiety. However, studies show that online peer support groups are not always as effective as expected largely due to users' negative experiences with unhelpful counselors. Peer counselors are key to the success of online peer counseling platforms, but most of them often do not have systematic ways to receive guidelines or supervision. In this work, we introduce CARE: an interactive AI-based tool to empower peer counselors through automatic suggestion generation. During the practical training stage, CARE helps diagnose which specific counseling strategies are most suitable in the given context and provides tailored example responses as suggestions. Counselors can choose to select, modify, or ignore any suggestion before replying to the support seeker. Building upon the Motivational Interviewing framework, CARE utilizes large-scale counseling conversation data together with advanced natural language generation techniques to achieve these functionalities. We demonstrate the efficacy of CARE by performing both quantitative evaluations and qualitative user studies through simulated chats and semi-structured interviews. We also find that CARE especially helps novice counselors respond better in challenging situations. 
    more » « less
  3. Online mental health support communities, in which volunteer counselors provide accessible mental and emotional health support, have grown in recent years. Despite millions of people using these platforms, the clinical effectiveness of these communities on mental health symptoms remains unknown. Although volunteers receive some training on the therapeutic skills proven effective in face-to-face environments, such as active listening and motivational interviewing, it is unclear how the usage of these skills in an online context affects people's mental health. In our work, we collaborate with one of the largest online peer support platforms and use both natural language processing and machine learning techniques to examine how one-on-one support chats on the platform affect clients' depression and anxiety symptoms. We measure how characteristics of support-providers, such as their experience on the platform and use of therapeutic skills (e.g. affirmation, showing empathy), affect support-seekers' mental health changes. Based on a propensity-score matching analysis to approximate a random-assignment experiment, results shows that online peer support chats improve both depression and anxiety symptoms with a statistically significant but relatively small effect size. Additionally, support providers' techniques such as emphasizing the autonomy of the client lead to better mental health outcomes. However, we also found that the use of some behaviors, such as persuading and providing information, are associated with worsening of mental health symptoms. Our work provides key understanding for mental health care in the online setting and designing training systems for online support providers. 
    more » « less
  4. Reflective listening is a fundamental communication skill in behavioral health counseling. It enables counselors to demonstrate an understanding of and empathy for clients’ experiences and concerns. Training to acquire and refine reflective listening skills is essential for counseling proficiency. Yet, it faces significant barriers, notably the need for specialized and timely feedback to improve counseling skills. In this work, we evaluate and compare several computational models, including transformer-based architectures, for their ability to assess the quality of counselors’ reflective listening skills. We explore a spectrum of neural-based models, ranging from compact, specialized RoBERTa models to advanced large-scale language models such as Flan, Mistral, and GPT-3.5, to score psychotherapy reflections. We introduce a psychotherapy dataset that encompasses three basic levels of reflective listening skills. Through comparative experiments, we show that a finetuned small RoBERTa model with a custom learning objective (Prompt-Aware margIn Ranking (PAIR)) effectively provides constructive feedback to counselors in training. This study also highlights the potential of machine learning in enhancing the training process for motivational interviewing (MI) by offering scalable and effective feedback alternatives for counseling training. 
    more » « less
  5. Mental health counseling is an enterprise with profound societal importance where conversations play a primary role. In order to acquire the conversational skills needed to face a challenging range of situations, mental health counselors must rely on training and on continued experience with actual clients. However, in the absence of large scale longitudinal studies, the nature and significance of this developmental process remain unclear. For example, prior literature suggests that experience might not translate into consequential changes in counselor behavior. This has led some to even argue that counseling is a profession without expertise. In this work, we develop a computational framework to quantify the extent to which individuals change their linguistic behavior with experience and to study the nature of this evolution. We use our framework to conduct a large longitudinal study of mental health counseling conversations, tracking over 3,400 counselors across their tenure. We reveal that overall, counselors do indeed change their conversational behavior to become more diverse across interactions, developing an individual voice that distinguishes them from other counselors. Furthermore, a finer-grained investigation shows that the rate and nature of this diversification vary across functionally different conversational components. 
    more » « less