skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Finding Your Voice: The Linguistic Development of Mental Health Counselors
Mental health counseling is an enterprise with profound societal importance where conversations play a primary role. In order to acquire the conversational skills needed to face a challenging range of situations, mental health counselors must rely on training and on continued experience with actual clients. However, in the absence of large scale longitudinal studies, the nature and significance of this developmental process remain unclear. For example, prior literature suggests that experience might not translate into consequential changes in counselor behavior. This has led some to even argue that counseling is a profession without expertise. In this work, we develop a computational framework to quantify the extent to which individuals change their linguistic behavior with experience and to study the nature of this evolution. We use our framework to conduct a large longitudinal study of mental health counseling conversations, tracking over 3,400 counselors across their tenure. We reveal that overall, counselors do indeed change their conversational behavior to become more diverse across interactions, developing an individual voice that distinguishes them from other counselors. Furthermore, a finer-grained investigation shows that the rate and nature of this diversification vary across functionally different conversational components.  more » « less
Award ID(s):
1741441
PAR ID:
10113288
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics
Page Range / eLocation ID:
936–947
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Millions of people participate in online peer-to-peer support sessions, yet there has been little prior research on systematic psychology-based evaluations of fine-grained peer-counselor behavior in relation to client satisfaction. This paper seeks to bridge this gap by mapping peer-counselor chat-messages to motivational interviewing (MI) techniques. We annotate 14,797 utterances from 734 chat conversations using 17 MI techniques and introduce four new interviewing codes such as ''chit-chat'' and ''inappropriate'' to account for the unique conversational patterns observed on online platforms. We automate the process of labeling peer-counselor responses to MI techniques by fine-tuning large domain-specific language models and then use these automated measures to investigate the behavior of the peer counselors via correlational studies. Specifically, we study the impact of MI techniques on the conversation ratings to investigate the techniques that predict clients' satisfaction with their counseling sessions. When counselors use techniques such as reflection and affirmation, clients are more satisfied. Examining volunteer counselors' change in usage of techniques suggest that counselors learn to use more introduction and open questions as they gain experience. This work provides a deeper understanding of the use of motivational interviewing techniques on peer-to-peer counselor platforms and sheds light on how to build better training programs for volunteer counselors on online platforms. 
    more » « less
  2. Realistic practice and tailored feedback are key processes for training peer counselors with clinical skills. However, existing mechanisms of providing feedback largely rely on human supervision. Peer counselors often lack mechanisms to receive detailed feedback from experienced mentors, making it difficult for them to support the large number of people with mental health issues who use peer counseling. Our work aims to leverage large language models to provide contextualized and multi-level feedback to empower peer counselors, especially novices, at scale. To achieve this, we co-design with a group of senior psychotherapy supervisors to develop a multi-level feedback taxonomy, and then construct a publicly available dataset with comprehensive feedback annotations of 400 emotional support conversations. We further design a self-improvement method on top of large language models to enhance the automatic generation of feedback. Via qualitative and quantitative evaluation with domain experts, we demonstrate that our method minimizes the risk of potentially harmful and low-quality feedback generation which is desirable in such high-stakes scenarios. 
    more » « less
  3. Reflective listening is a fundamental communication skill in behavioral health counseling. It enables counselors to demonstrate an understanding of and empathy for clients’ experiences and concerns. Training to acquire and refine reflective listening skills is essential for counseling proficiency. Yet, it faces significant barriers, notably the need for specialized and timely feedback to improve counseling skills. In this work, we evaluate and compare several computational models, including transformer-based architectures, for their ability to assess the quality of counselors’ reflective listening skills. We explore a spectrum of neural-based models, ranging from compact, specialized RoBERTa models to advanced large-scale language models such as Flan, Mistral, and GPT-3.5, to score psychotherapy reflections. We introduce a psychotherapy dataset that encompasses three basic levels of reflective listening skills. Through comparative experiments, we show that a finetuned small RoBERTa model with a custom learning objective (Prompt-Aware margIn Ranking (PAIR)) effectively provides constructive feedback to counselors in training. This study also highlights the potential of machine learning in enhancing the training process for motivational interviewing (MI) by offering scalable and effective feedback alternatives for counseling training. 
    more » « less
  4. STEM graduate students have high rates of stress, burn-out, and depression fueled by the competitive nature of these programs, financial and job insecurities, and the isolation that often comes alongside graduate school. The purpose of this study is to explore the impact of a brief counseling support group provided to STEM graduate students across two university campuses. Using a phenomenological framework, analysis of focus group and individual interviews revealed the unique challenges of STEM graduate school education, the therapeutic benefits of counseling groups, and the potential difficulties of providing mental health support to this population. 
    more » « less
  5. null (Ed.)
    Embodied conversational agents (ECAs) provide an interface modality on smartphones that may be particularly effective for tasks with significant social, affective, reflective, and narrative aspects, such as health education and behavior change counseling. However, the conversational medium is significantly slower than conventional graphical user interfaces (GUIs) for brief, time-sensitive tasks. We conducted a randomized experiment to determine user preferences in performing two kinds of health-related tasks—one affective and narrative in nature and one transactional—and gave participants a choice of a conventional GUI or a functionally equivalent ECA on a smartphone to complete the task. We found significant main effects of task type and user preference on user choice of modality, with participants choosing the conventional GUI more often for transactional and time-sensitive tasks. 
    more » « less