- Award ID(s):
- 1904547
- NSF-PAR ID:
- 10411942
- Date Published:
- Journal Name:
- Inorganic Chemistry Frontiers
- Volume:
- 9
- Issue:
- 18
- ISSN:
- 2052-1553
- Page Range / eLocation ID:
- 4695 to 4704
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Yb 3+ -Doped lead-halide perovskites (Yb 3+ :CsPb(Cl 1−x Br x ) 3 ) have emerged as unique materials combining strong, tunable broadband absorption with near-infrared photoluminescence quantum yields (PLQYs) approaching 200% at ambient temperature. These remarkable properties make Yb 3+ :CsPb(Cl 1−x Br x ) 3 an extremely promising candidate for spectral shaping in high-efficiency photovoltaic devices. Previous theoretical assessments of such “downconversion” devices have predicted single-junction efficiencies up to 40%, but have been highly idealized. Real materials like Yb 3+ :CsPb(Cl 1−x Br x ) 3 have practical limitations such as constrained band-gap and PL energies, non-directional emission, and an excitation-power-dependent PLQY. Hence, it is unclear whether Yb 3+ :CsPb(Cl 1−x Br x ) 3 , or any other non-ideal quantum-cutting material, can indeed boost the efficiencies of real high-performance PV. Here, we examine the thermodynamic, detailed-balance efficiency limit of Yb 3+ :CsPb(Cl 1−x Br x ) 3 on different existing PV under real-world conditions. Among these, we identify silicon heterojunction technology as very promising for achieving significant performance gains when paired with Yb 3+ :CsPb(Cl 1−x Br x ) 3 , and we predict power-conversion efficiencies of up to 32% for this combination. Surprisingly, PL saturation does not negate the improved device performance. Calculations accounting for actual hourly incident solar photon fluxes show that Yb 3+ :CsPb(Cl 1−x Br x ) 3 boosts power-conversion efficiencies at all times of day and year in two representative geographic locations. Predicted annual energy yields are comparable to those of tandem perovskite-on-silicon technologies, but without the need for current matching, tracking, or additional electrodes and inverters. In addition, we show that band-gap optimization in real quantum cutters is inherently a function of their PLQY and the ability to capture that PL. These results provide key design rules needed for development of high-efficiency quantum-cutting photovoltaic devices based on Yb 3+ :CsPb(Cl 1−x Br x ) 3 .more » « less
-
Abstract Efficient broadband near‐infrared (NIR) emitting materials with an emission peak centered above 830 nm are crucial for smart NIR spectroscopy‐based technologies. However, the development of these materials remains a significant challenge. Herein, a series of design rules rooted in computational methods and empirical crystal‐chemical analysis is applied to identify a new Cr3+‐substituted phosphor. The compound GaTaO4:Cr3+emerged from this study is based on the material's high structural rigidity, suitable electronic environment, and relatively weak electron–phonon coupling. Irradiating this new phosphor with 460 nm blue light generates a broadband NIR emission (λem,max = 840 nm) covering the 700–1100 nm region of the electromagnetic spectrum with a full width at half maximum of 140 nm. The phase has a high internal quantum yield of 91% and excellent thermal stability, maintaining 85% of the room temperature emission intensity at 100 °C. Fabricating a phosphor‐converted light‐emitting diode device shows that the new compound generates an intense NIR emission (178 mW at 500 mA) with photoelectric efficiency of 6%. This work not only provides a new material that has the potential for next‐generation high‐power NIR applications but also highlights a set of design rules capable of developing highly efficient long‐wavelength broadband NIR materials.
-
All‐inorganic copper(I) halides have recently emerged as attractive alternatives to lead‐based halide perovskites and rare‐earth‐doped inorganics for light emission applications. Most of the newly discovered all‐inorganic Cu(I) halides demonstrate high‐efficiency blue emission albeit with unusually poor tunability of photoluminescence (PL) properties. This work reports the facile preparation of three new copper(I) halides based on the guanidinium cation: (CN3H6)3CuCl4, (CN3H6)7Cu3Br10·3(C3H7NO), and (CN3H6)7Cu3I10·3(C3H7NO). A comprehensive characterization of PL is presented for these novel materials, which have highly tunable, dual blue–yellow emission responsive to both excitation wavelength and vacuum annealing. These have remarkable photoluminescence quantum yield (PLQY) values of up to 34.6% and color‐rendering indices (CRI) up to 97% for tunable, single‐phase white light emission with correlated color temperatures (CCT) ranging from 4851 to 18 921 K, demonstrating the excellent potential of Cu(I) halides for light emission applications.